Spaces:
Running
on
Zero
Running
on
Zero
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
import re # Import regex library
|
6 |
+
|
7 |
+
# Load model and processor
|
8 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
|
9 |
+
model = WhisperForConditionalGeneration.from_pretrained("aiola/whisper-ner-v1").to("cuda")
|
10 |
+
|
11 |
+
def unify_ner_text(text, symbols_to_replace=("/", " ", ":", "_")):
|
12 |
+
"""Process and standardize entity text by replacing certain symbols and normalizing spaces."""
|
13 |
+
text = " ".join(text.split())
|
14 |
+
for symbol in symbols_to_replace:
|
15 |
+
text = text.replace(symbol, "-")
|
16 |
+
return text.lower()
|
17 |
+
|
18 |
+
|
19 |
+
def transcribe_and_recognize_entities(audio_file, prompt):
|
20 |
+
target_sample_rate = 16000
|
21 |
+
signal, sampling_rate = torchaudio.load(audio_file)
|
22 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=target_sample_rate)
|
23 |
+
signal = resampler(signal)
|
24 |
+
if signal.ndim == 2:
|
25 |
+
signal = torch.mean(signal, dim=0)
|
26 |
+
|
27 |
+
signal = signal.cpu() # Ensure signal is on CPU for processing
|
28 |
+
input_features = processor(signal, sampling_rate=target_sample_rate, return_tensors="pt").input_features
|
29 |
+
|
30 |
+
# Split the prompt into individual NER types and process each one
|
31 |
+
ner_types = prompt.split(',')
|
32 |
+
processed_ner_types = [unify_ner_text(ner_type.strip()) for ner_type in ner_types]
|
33 |
+
prompt = ", ".join(processed_ner_types)
|
34 |
+
|
35 |
+
print(f"Prompt after unify_ner_text: {prompt}")
|
36 |
+
prompt_ids = processor.get_prompt_ids(prompt, return_tensors="pt")
|
37 |
+
prompt_ids = prompt_ids.to("cuda")
|
38 |
+
|
39 |
+
predicted_ids = model.generate(
|
40 |
+
input_features.to("cuda"),
|
41 |
+
max_new_tokens=256,
|
42 |
+
prompt_ids=prompt_ids,
|
43 |
+
language='en', # Ensure transcription is translated to English
|
44 |
+
generation_config=model.generation_config,
|
45 |
+
)
|
46 |
+
# slice only the output without the prompt itself at the start.
|
47 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
48 |
+
|
49 |
+
# Determine the length of the prompt in the transcription
|
50 |
+
prompt_length_in_transcription = len(prompt)
|
51 |
+
|
52 |
+
# Slice the transcription to remove the prompt itself from the output
|
53 |
+
transcription = transcription[prompt_length_in_transcription + 1:]
|
54 |
+
|
55 |
+
return transcription
|
56 |
+
|
57 |
+
# Define Gradio interface
|
58 |
+
iface = gr.Interface(
|
59 |
+
fn=transcribe_and_recognize_entities,
|
60 |
+
inputs=[
|
61 |
+
gr.Audio(label="Upload Audio", type="filepath"),
|
62 |
+
gr.Textbox(label="Entity Recognition Prompt"),
|
63 |
+
],
|
64 |
+
outputs=gr.Textbox(label="Transcription and Entities"),
|
65 |
+
title="Whisper-NER Demo",
|
66 |
+
description="Upload an audio file and enter entities to identify. The model will transcribe the audio and recognize entities."
|
67 |
+
)
|
68 |
+
|
69 |
+
# iface.launch()
|
70 |
+
iface.launch(share=True)
|