# Thank AK. https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0/blob/main/app.py
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, EulerAncestralDiscreteScheduler
from transformers import CLIPFeatureExtractor
import gradio as gr
import torch
from PIL import Image
model_id = 'aipicasso/cool-japan-diffusion-2-1-1-beta'
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
feature_extractor = CLIPFeatureExtractor.from_pretrained(model_id)
pipe = StableDiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler)
pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler,
requires_safety_checker=False,
safety_checker=None,
feature_extractor=feature_extractor
)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
pipe_i2i = pipe_i2i.to("cuda")
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def inference(prompt, guidance, steps, image_size="Square", seed=0, img=None, strength=0.5, neg_prompt="", cool_japan_type="Anime", disable_auto_prompt_correction=False):
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
if(not disable_auto_prompt_correction):
prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt,cool_japan_type)
if(image_size=="Portrait"):
height=768
width=576
elif(image_size=="Landscape"):
height=576
width=768
else:
height=512
width=512
print(prompt,neg_prompt)
try:
if img is not None:
return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
else:
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
except Exception as e:
return None, error_str(e)
def auto_prompt_correction(prompt_ui,neg_prompt_ui,cool_japan_type_ui):
# auto prompt correction
cool_japan_type=str(cool_japan_type_ui)
if(cool_japan_type=="Manga"):
cool_japan_type="manga, monochrome, white and black manga"
elif(cool_japan_type=="Game"):
cool_japan_type="game"
else:
cool_japan_type="anime"
prompt=str(prompt_ui)
neg_prompt=str(neg_prompt_ui)
prompt=prompt.lower()
neg_prompt=neg_prompt.lower()
if(prompt=="" and neg_prompt==""):
prompt=f"{cool_japan_type}, a portrait of a girl, 4k, detailed"
neg_prompt=f"(((deformed))), blurry, ((((bad anatomy)))), {neg_prompt}, bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 3d, cg, text"
splited_prompt=prompt.replace(","," ").replace("_"," ").split(" ")
splited_prompt=["a person" if p=="solo" else p for p in splited_prompt]
splited_prompt=["girl" if p=="1girl" else p for p in splited_prompt]
splited_prompt=["a couple of girls" if p=="2girls" else p for p in splited_prompt]
splited_prompt=["a couple of boys" if p=="2boys" else p for p in splited_prompt]
human_words=["girl","maid","maids","female","woman","girls","a couple of girls","women","boy","boys","a couple of boys","male","man","men","guy","guys"]
for word in human_words:
if( word in splited_prompt):
prompt=f"{cool_japan_type}, {prompt}, 4k, detailed"
neg_prompt=f"(((deformed))), blurry, ((((bad anatomy)))), {neg_prompt}, bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 3d, cg, text"
animal_words=["cat","dog","bird"]
for word in animal_words:
if( word in splited_prompt):
prompt=f"{cool_japan_type}, a {word}, 4k, detailed"
neg_prompt=f"(((deformed))), blurry, ((((bad anatomy)))), {neg_prompt}, bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 3d, cg, text"
background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo", "kyoto", "nara", "shibuya", "shinjuku"]
for word in background_words:
if( word in splited_prompt):
prompt=f"{cool_japan_type}, shinkai makoto, {word}, 4k, 8k, highly detailed"
neg_prompt=f"(((deformed))), {neg_prompt}, girl, boy, photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text"
return prompt,neg_prompt
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
result = pipe(
prompt,
negative_prompt = neg_prompt,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return result.images[0]
def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe_i2i(
prompt,
negative_prompt = neg_prompt,
init_image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
#width = width,
#height = height,
generator = generator)
return result.images[0]
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
Cool Japan Diffusion 2.1.1 Beta
Demo for Cool Japan Diffusion 2.1.1 Beta Stable Diffusion model.
sample prompt1 : girl, kimono
sample prompt2 : boy, school uniform
日本語の取扱説明書.
Running on {"
GPU 🔥" if torch.cuda.is_available() else f"
CPU 🥶. For faster inference it is recommended to
upgrade to GPU in Settings"}
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
with gr.Row():
cool_japan_type=gr.Radio(["Anime", "Manga", "Game"])
cool_japan_type.show_label=False
cool_japan_type.value="Anime"
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]").style(container=False)
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
image_out = gr.Image(height=768,width=576)
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.")
with gr.Row():
image_size=gr.Radio(["Portrait","Landscape","Square"])
image_size.show_label=False
image_size.value="Portrait"
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=75, step=1)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
with gr.Tab("Image to image"):
with gr.Group():
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
inputs = [prompt, guidance, steps, image_size, seed, image, strength, neg_prompt, cool_japan_type, disable_auto_prompt_correction]
outputs = [image_out, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
gr.HTML("""
""")
demo.queue(concurrency_count=1)
demo.launch()