File size: 3,904 Bytes
4af9c2b
 
 
 
 
d268852
4af9c2b
2bd6b89
 
c8d73ef
5e187cb
c8d73ef
4af9c2b
4353309
4af9c2b
2d7c34b
dd704f7
c8d73ef
 
 
efbf68a
 
c8d73ef
4af9c2b
 
999c041
3f3e9be
fa169a4
 
 
 
c8d73ef
4af9c2b
c8d73ef
1622413
999c041
0358a3a
1622413
 
 
 
01fc9d8
23616f4
01fc9d8
 
fa169a4
 
4af9c2b
114766c
 
 
 
 
 
 
c9a9082
 
 
999c041
 
c9a9082
 
 
056fb20
4af9c2b
 
 
 
 
 
c8d73ef
4af9c2b
 
 
 
999c041
4af9c2b
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Ref: https://huggingface.co/spaces/multimodalart/cosxl
import gradio as gr
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import spaces 
import torch 
import os

from compel import Compel, ReturnedEmbeddingsType

from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

model_id = "aipicasso/emi-2"
token=os.environ["TOKEN"]

scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id,subfolder="scheduler",token=token)
pipe_normal = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16,token=token)

negative_ti_file = hf_hub_download(repo_id="Aikimi/unaestheticXL_Negative_TI", filename="unaestheticXLv31.safetensors")
state_dict = load_file(negative_ti_file)
pipe_normal.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder_2, tokenizer=pipe_normal.tokenizer_2)
pipe_normal.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder, tokenizer=pipe_normal.tokenizer)

pipe_normal.to("cuda")

#pipe_normal.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)

compel = Compel(tokenizer=[pipe_normal.tokenizer, pipe_normal.tokenizer_2] , 
                text_encoder=[pipe_normal.text_encoder, pipe_normal.text_encoder_2], 
                returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, 
                requires_pooled=[False, True])

@spaces.GPU
def run_normal(prompt, negative_prompt="", guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)):
    conditioning, pooled = compel(prompt)
    negative_conditioning, negatice_pooled = compel("unaestheticXLv31-, bad hand, bad anatomy, low quality, "+negative_prompt)
    result = pipe_normal(
        prompt_embeds=conditioning,
        pooled_prompt_embeds=pooled, 
        negative_prompt_embeds=negative_conditioning, 
        negative_pooled_prompt_embeds=negatice_pooled,
        num_inference_steps = 25,
        guidance_scale = guidance_scale,
        width = 768,
        height = 1344)
    
    return result.images[0]

css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
'''

normal_examples = [
    "1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, cherry blossom",
    "1girl, (full body)++, brown bob short hair, brown eyes, school uniform, cherry blossom",
    "no person, manga, black and white, monochrome, Mt. fuji, 4k, highly, detailed",
    "no person, manga, black and white, monochrome, buldings in Tokyo from sky, 4k, highly, detailed",
    "1boy, (upper body)++, black short hair, black eyes, looking at viewer, green leaves",
    "1boy, (full body)++, black bob short hair, black eyes, school uniform, green leaves",
]

with gr.Blocks(css=css) as demo:
    gr.Markdown('''# Emi 2
    Official demo for Emi 2
    ''')
    with gr.Group():
        with gr.Row():
          prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: 1girl, face, brown bob short hair, brown eyes, looking at viewer")
          button_normal = gr.Button("Generate", min_width=120)
        output_normal = gr.Image(label="Your result image", interactive=False)
        with gr.Accordion("Advanced Settings", open=False):
          negative_prompt_normal = gr.Textbox(label="Negative Prompt")
          guidance_scale_normal = gr.Number(label="Guidance Scale", value=7.5)
    gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=True) 
    
    gr.on(
        triggers=[
            button_normal.click,
            prompt_normal.submit
        ],
        fn=run_normal,
        inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal],
        outputs=[output_normal],
    )
if __name__ == "__main__":
    demo.launch(share=True)