emi-2-demo / app.py
alfredplpl's picture
Update app.py
1622413 verified
raw
history blame
3.46 kB
# Ref: https://huggingface.co/spaces/multimodalart/cosxl
import gradio as gr
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import spaces
import torch
import os
from compel import Compel, ReturnedEmbeddingsType
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
model_id = "aipicasso/emi-2"
token=os.environ["TOKEN"]
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id,subfolder="scheduler",token=token)
pipe_normal = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16,token=token)
negative_ti_file = hf_hub_download(repo_id="Aikimi/unaestheticXL_Negative_TI", filename="unaestheticXLv31.safetensors")
state_dict = load_file(negative_ti_file)
pipe_normal.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder_2, tokenizer=pipe_normal.tokenizer_2)
pipe_normal.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder, tokenizer=pipe_normal.tokenizer)
pipe_normal.to("cuda")
compel = Compel(tokenizer=[pipe_normal.tokenizer, pipe_normal.tokenizer_2] ,
text_encoder=[pipe_normal.text_encoder, pipe_normal.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True])
@spaces.GPU
def run_normal(prompt, negative_prompt="", guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)):
conditioning, pooled = compel(prompt)
negative_conditioning, negatice_pooled = compel("(unaestheticXLv31)++, "+negative_prompt)
result = pipe_normal(
prompt_embeds=conditioning,
pooled_prompt_embeds=pooled,
negative_prompt_embeds=negative_conditioning,
negative_pooled_prompt_embeds=negatice_pooled,
num_inference_steps = 25,
guidance_scale = guidance_scale,
width = 768,
height = 1344)
return result.images[0]
css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
'''
normal_examples = ["1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, (white background, simple background)++","1girl, (full body)++, brown bob short hair, brown eyes, school uniform, corrider in the school"]
with gr.Blocks(css=css) as demo:
gr.Markdown('''# Emi 2
Official demo for Emi 2
''')
with gr.Group():
with gr.Row():
prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: 1girl, face, brown bob short hair, brown eyes, looking at viewer")
button_normal = gr.Button("Generate", min_width=120)
output_normal = gr.Image(label="Your result image", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_normal = gr.Textbox(label="Negative Prompt")
guidance_scale_normal = gr.Number(label="Guidance Scale", value=7)
gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=True)
gr.on(
triggers=[
button_normal.click,
prompt_normal.submit
],
fn=run_normal,
inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal],
outputs=[output_normal],
)
if __name__ == "__main__":
demo.launch(share=True)