Spaces:
Running
on
Zero
Running
on
Zero
# Ref: https://huggingface.co/spaces/multimodalart/cosxl | |
import gradio as gr | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
import spaces | |
import torch | |
import os | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
model_id = "aipicasso/emi-2" | |
token=os.environ["TOKEN"] | |
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id,subfolder="scheduler",token=token) | |
pipe_normal = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16,token=token) | |
negative_ti_file = hf_hub_download(repo_id="Aikimi/unaestheticXL_Negative_TI", filename="unaestheticXLv31.safetensors") | |
state_dict = load_file(negative_ti_file) | |
pipe_normal.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder_2, tokenizer=pipe_normal.tokenizer_2) | |
pipe_normal.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder, tokenizer=pipe_normal.tokenizer) | |
pipe_normal.to("cuda") | |
compel = Compel(tokenizer=[pipe_normal.tokenizer, pipe_normal.tokenizer_2] , | |
text_encoder=[pipe_normal.text_encoder, pipe_normal.text_encoder_2], | |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
requires_pooled=[False, True]) | |
def run_normal(prompt, negative_prompt="", guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)): | |
conditioning, pooled = compel([prompt, "unaestheticXLv31--, "+neg_prompt]) | |
result = pipe( | |
prompt_embeds=conditioning[0:1], | |
pooled_prompt_embeds=pooled[0:1], | |
negative_prompt_embeds=conditioning[1:2], | |
negative_pooled_prompt_embeds=pooled[1:2], | |
num_inference_steps = 20, | |
guidance_scale = guidance_scale, | |
width = 1344, | |
height = 768) | |
return result.images[0] | |
css = ''' | |
.gradio-container{ | |
max-width: 768px !important; | |
margin: 0 auto; | |
} | |
''' | |
normal_examples = ["1girl, face, brown bob short hair, brown eyes, looking at viewer"] | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown('''# Emi 2 | |
Official demo for Emi 2 | |
''') | |
with gr.Group(): | |
with gr.Row(): | |
prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: 1girl, face, brown bob short hair, brown eyes, looking at viewer") | |
button_normal = gr.Button("Generate", min_width=120) | |
output_normal = gr.Image(label="Your result image", interactive=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt_normal = gr.Textbox(label="Negative Prompt") | |
guidance_scale_normal = gr.Number(label="Guidance Scale", value=7) | |
gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=True) | |
gr.on( | |
triggers=[ | |
button_normal.click, | |
prompt_normal.submit | |
], | |
fn=run_normal, | |
inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal], | |
outputs=[output_normal], | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |