# Ref: https://huggingface.co/spaces/multimodalart/cosxl import gradio as gr from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler import spaces import torch import os from compel import Compel, ReturnedEmbeddingsType from huggingface_hub import hf_hub_download from safetensors.torch import load_file model_id = "aipicasso/emi-2-5" token=os.environ["TOKEN"] scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id,subfolder="scheduler",token=token) pipe_normal = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16,token=token) negative_ti_file = hf_hub_download(repo_id="Aikimi/unaestheticXL_Negative_TI", filename="unaestheticXLv31.safetensors") state_dict = load_file(negative_ti_file) pipe_normal.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder_2, tokenizer=pipe_normal.tokenizer_2) pipe_normal.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder, tokenizer=pipe_normal.tokenizer) state_dict = load_file("unaestheticXL_Alb2.safetensors") pipe_normal.load_textual_inversion(state_dict["clip_g"], token="unaestheticXL_Alb2", text_encoder=pipe_normal.text_encoder_2, tokenizer=pipe_normal.tokenizer_2) pipe_normal.load_textual_inversion(state_dict["clip_l"], token="unaestheticXL_Alb2", text_encoder=pipe_normal.text_encoder, tokenizer=pipe_normal.tokenizer) pipe_normal.load_lora_weights("fix_hands.pt") pipe_normal.fuse_lora(lora_scale=1.0) pipe_normal.to("cuda") pipe_normal.enable_freeu(s1=1.2, s2=0.7, b1=1.1, b2=1.3) compel = Compel(tokenizer=[pipe_normal.tokenizer, pipe_normal.tokenizer_2] , text_encoder=[pipe_normal.text_encoder, pipe_normal.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True]) @spaces.GPU def run_normal(prompt, negative_prompt="", guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)): # ユーザーの著作権侵害を防ぐフィルター words=["pokemon", "pikachu", "picachu", "mario", "sonic", "genshin"] for word in words: prompt=prompt.replace(word,"") if(prompt==""): conditioning, pooled = compel("1girl, (upper body)++, black long hair, hime cut, black eyes, looking at viewer, blue and purple hydrangea") else: conditioning, pooled = compel(prompt) negative_conditioning, negatice_pooled = compel("(unaestheticXLv31)++++, (unaestheticXL_Alb2)++++, bad hands, bad anatomy, low quality, 3d, photo, realism, text, sign, "+negative_prompt) result = pipe_normal( prompt_embeds=conditioning, pooled_prompt_embeds=pooled, negative_prompt_embeds=negative_conditioning, negative_pooled_prompt_embeds=negatice_pooled, num_inference_steps = 25, guidance_scale = guidance_scale, width = 768, height = 1344) return result.images[0] css = ''' .gradio-container{ max-width: 768px !important; margin: 0 auto; } ''' normal_examples = [ "1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, blue and purple hydrangea", "1girl, (full body)++, brown bob short hair, brown eyes, school uniform, blue and purple hydrangea", "no humans, manga, black and white, monochrome, Mt. fuji, 4k, highly detailed", "no humans, manga, black and white, monochrome, Shibuya street, 4k, highly detailed", "1boy, (upper body)++, silver very short hair, blue eyes, looking at viewer, white background", "1boy, (full body)++, silver very short hair, blue eyes, looking at viewer, white background", ] with gr.Blocks(css=css) as demo: gr.Markdown('''# Emi 2.5 Official demo for [Emi 2.5](https://huggingface.co/aipicasso/emi-2-5). Click the generate button!
本モデルの生成物は各種法令に従って取り扱って下さい。 ''') gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") with gr.Group(): with gr.Row(): prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: 1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, cherry blossom") button_normal = gr.Button("Generate", min_width=120) output_normal = gr.Image(label="Your result image", interactive=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt_normal = gr.Textbox(label="Negative Prompt") guidance_scale_normal = gr.Number(label="Guidance Scale", value=7.5) gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=True) gr.on( triggers=[ button_normal.click, prompt_normal.submit ], fn=run_normal, inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal], outputs=[output_normal], ) if __name__ == "__main__": demo.launch(share=True)