# Ref: https://huggingface.co/spaces/multimodalart/cosxl import gradio as gr from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler import spaces import torch import os from compel import Compel, ReturnedEmbeddingsType from huggingface_hub import hf_hub_download from safetensors.torch import load_file model_id = "aipicasso/emi-2" token=os.environ["TOKEN"] scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id,subfolder="scheduler",token=token) pipe_normal = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16,token=token) negative_ti_file = hf_hub_download(repo_id="Aikimi/unaestheticXL_Negative_TI", filename="unaestheticXLv31.safetensors") state_dict = load_file(negative_ti_file) pipe_normal.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder_2, tokenizer=pipe_normal.tokenizer_2) pipe_normal.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder, tokenizer=pipe_normal.tokenizer) pipe_normal.to("cuda") pipe_normal.enable_freeu(s1=1.2, s2=0.7, b1=1.1, b2=1.3) compel = Compel(tokenizer=[pipe_normal.tokenizer, pipe_normal.tokenizer_2] , text_encoder=[pipe_normal.text_encoder, pipe_normal.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True]) @spaces.GPU def run_normal(prompt, negative_prompt="", guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)): if(prompt==""): conditioning, pooled = compel("1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, cherry blossom") else: conditioning, pooled = compel(prompt) negative_conditioning, negatice_pooled = compel("(unaestheticXLv31)++, bad hand, bad anatomy, low quality, 3d, photo, realism, text, sign, "+negative_prompt) result = pipe_normal( prompt_embeds=conditioning, pooled_prompt_embeds=pooled, negative_prompt_embeds=negative_conditioning, negative_pooled_prompt_embeds=negatice_pooled, num_inference_steps = 25, guidance_scale = guidance_scale, width = 768, height = 1344) return result.images[0] css = ''' .gradio-container{ max-width: 768px !important; margin: 0 auto; } ''' normal_examples = [ "1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, cherry blossom", "1girl, (full body)++, brown bob short hair, brown eyes, school uniform, cherry blossom", "no humans, manga, black and white, monochrome, Mt. fuji, 4k, highly detailed", "no humans, manga, black and white, monochrome, Shibuya street, 4k, highly detailed", "1boy, (upper body)++, black short hair, black eyes, looking at viewer, green leaves", "1boy, (full body)++, black bob short hair, black eyes, school uniform, green leaves", ] with gr.Blocks(css=css) as demo: gr.Markdown('''# Emi 2 Official demo for [Emi 2](https://huggingface.co/aipicasso/emi-2). Click the generate button!
本モデルの生成物は各種法令に従って取り扱って下さい。 ''') with gr.Group(): with gr.Row(): prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: 1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, cherry blossom") button_normal = gr.Button("Generate", min_width=120) output_normal = gr.Image(label="Your result image", interactive=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt_normal = gr.Textbox(label="Negative Prompt") guidance_scale_normal = gr.Number(label="Guidance Scale", value=7.5) gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=True) gr.on( triggers=[ button_normal.click, prompt_normal.submit ], fn=run_normal, inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal], outputs=[output_normal], ) if __name__ == "__main__": demo.launch(share=True)