robertselvam commited on
Commit
7ebdef9
·
verified ·
1 Parent(s): 4e91439

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -25
app.py CHANGED
@@ -30,6 +30,8 @@ import yfinance as yf
30
  import pandas as pd
31
  import nltk
32
  from nltk.tokenize import sent_tokenize
 
 
33
 
34
  class KeyValueExtractor:
35
 
@@ -42,6 +44,7 @@ class KeyValueExtractor:
42
  pdf_file_path (str): The path to the input PDF file.
43
  """
44
  self.model = "facebook/bart-large-mnli"
 
45
 
46
 
47
  def get_url(self,keyword):
@@ -113,19 +116,34 @@ class KeyValueExtractor:
113
  return result["output_text"]
114
 
115
  def one_day_summary(self,content) -> None:
116
-
117
- # Use OpenAI's Completion API to analyze the text and extract key-value pairs
118
- response = openai.Completion.create(
119
- engine="text-davinci-003", # You can choose a different engine as well
120
- temperature = 0,
121
- prompt=f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```.",
122
- max_tokens=1000 # You can adjust the length of the response
123
- )
124
-
125
- # Extract and return the chatbot's reply
126
- result = response['choices'][0]['text'].strip()
127
- print(result)
128
- return result
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
  def extract_key_value_pair(self,content) -> None:
131
 
@@ -136,18 +154,31 @@ class KeyValueExtractor:
136
  """
137
 
138
  try:
139
-
140
- # Use OpenAI's Completion API to analyze the text and extract key-value pairs
141
- response = openai.Completion.create(
142
- engine="text-davinci-003", # You can choose a different engine as well
143
- temperature = 0,
144
- prompt=f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```.",
145
- max_tokens=1000 # You can adjust the length of the response
146
- )
147
-
148
- # Extract and return the chatbot's reply
149
- result = response['choices'][0]['text'].strip()
150
- return result
 
 
 
 
 
 
 
 
 
 
 
 
 
151
  except Exception as e:
152
  # If an error occurs during the key-value extraction process, log the error
153
  logging.error(f"Error while extracting key-value pairs: {e}")
 
30
  import pandas as pd
31
  import nltk
32
  from nltk.tokenize import sent_tokenize
33
+ from openai import OpenAI
34
+
35
 
36
  class KeyValueExtractor:
37
 
 
44
  pdf_file_path (str): The path to the input PDF file.
45
  """
46
  self.model = "facebook/bart-large-mnli"
47
+ self.client = OpenAI()
48
 
49
 
50
  def get_url(self,keyword):
 
116
  return result["output_text"]
117
 
118
  def one_day_summary(self,content) -> None:
119
+ conversation = [
120
+ {"role": "system", "content": "You are a helpful assistant."},
121
+ {"role": "user", "content": f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```."}
122
+ ]
123
+
124
+ # Call OpenAI GPT-3.5-turbo
125
+ chat_completion = self.client.chat.completions.create(
126
+ model = "gpt-3.5-turbo",
127
+ messages = conversation,
128
+ max_tokens=1000,
129
+ temperature=0
130
+ )
131
+
132
+ response = chat_completion.choices[0].message.content
133
+ return response
134
+
135
+ # # Use OpenAI's Completion API to analyze the text and extract key-value pairs
136
+ # response = openai.Completion.create(
137
+ # engine="text-davinci-003", # You can choose a different engine as well
138
+ # temperature = 0,
139
+ # prompt=f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```.",
140
+ # max_tokens=1000 # You can adjust the length of the response
141
+ # )
142
+
143
+ # # Extract and return the chatbot's reply
144
+ # result = response['choices'][0]['text'].strip()
145
+ # print(result)
146
+ # return result
147
 
148
  def extract_key_value_pair(self,content) -> None:
149
 
 
154
  """
155
 
156
  try:
157
+ conversation = [
158
+ {"role": "system", "content": "You are a helpful assistant."},
159
+ {"role": "user", "content": f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```."}
160
+ ]
161
+
162
+ # Call OpenAI GPT-3.5-turbo
163
+ chat_completion = self.client.chat.completions.create(
164
+ model = "gpt-3.5-turbo",
165
+ messages = conversation,
166
+ max_tokens=1000,
167
+ temperature=0
168
+ )
169
+ response = chat_completion.choices[0].message.content
170
+ return response
171
+ # # Use OpenAI's Completion API to analyze the text and extract key-value pairs
172
+ # response = openai.Completion.create(
173
+ # engine="text-davinci-003", # You can choose a different engine as well
174
+ # temperature = 0,
175
+ # prompt=f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```.",
176
+ # max_tokens=1000 # You can adjust the length of the response
177
+ # )
178
+
179
+ # # Extract and return the chatbot's reply
180
+ # result = response['choices'][0]['text'].strip()
181
+ # return result
182
  except Exception as e:
183
  # If an error occurs during the key-value extraction process, log the error
184
  logging.error(f"Error while extracting key-value pairs: {e}")