Spaces:
Sleeping
Sleeping
Muthusamy6993
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,8 @@ import pdfplumber
|
|
5 |
from langchain.chains.mapreduce import MapReduceChain
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
from langchain.chains.summarize import load_summarize_chain
|
8 |
-
|
9 |
-
from
|
10 |
from langchain.prompts import PromptTemplate
|
11 |
import logging
|
12 |
import json
|
@@ -21,17 +21,24 @@ import pandas as pd
|
|
21 |
import requests
|
22 |
import gradio as gr
|
23 |
import re
|
24 |
-
from
|
25 |
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
26 |
from transformers import pipeline
|
27 |
import plotly.express as px
|
28 |
-
from
|
|
|
29 |
from langchain.chains.llm import LLMChain
|
30 |
import yfinance as yf
|
31 |
import pandas as pd
|
32 |
import nltk
|
33 |
from nltk.tokenize import sent_tokenize
|
34 |
from openai import AzureOpenAI
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
class KeyValueExtractor:
|
@@ -183,8 +190,8 @@ class KeyValueExtractor:
|
|
183 |
def analyze_sentiment_for_graph(self, text):
|
184 |
|
185 |
pipe = pipeline("zero-shot-classification", model=self.model)
|
186 |
-
|
187 |
-
result = pipe(text,
|
188 |
sentiment_scores = {
|
189 |
result['labels'][0]: result['scores'][0],
|
190 |
result['labels'][1]: result['scores'][1],
|
@@ -288,37 +295,52 @@ class KeyValueExtractor:
|
|
288 |
|
289 |
return bullet_string
|
290 |
|
291 |
-
def one_year_summary(self,keyword):
|
292 |
-
|
|
|
293 |
csv_path = self.get_finance_data(keyword)
|
|
|
294 |
df = self.csv_to_dataframe(csv_path)
|
|
|
|
|
|
|
|
|
295 |
output_file_path = self.save_dataframe_in_text_file(df)
|
|
|
|
|
|
|
296 |
docs = self.csv_loader(output_file_path)
|
|
|
|
|
|
|
297 |
split_docs = self.document_text_spilliter(docs)
|
|
|
|
|
298 |
|
299 |
-
|
|
|
300 |
{text}
|
301 |
CONCISE SUMMARY:"""
|
302 |
prompt = PromptTemplate.from_template(prompt_template)
|
303 |
|
304 |
-
# Prepare the
|
305 |
refine_template = (
|
306 |
"Your job is to produce a final summary\n"
|
307 |
"We have provided an existing summary up to a certain point: {existing_answer}\n"
|
308 |
-
"We have the opportunity to refine the existing summary"
|
309 |
"(only if needed) with some more context below.\n"
|
310 |
"------------\n"
|
311 |
"{text}\n"
|
312 |
"------------\n"
|
313 |
-
"Given the new context, refine the original summary"
|
314 |
"If the context isn't useful, return the original summary."
|
315 |
-
"10
|
316 |
)
|
317 |
refine_prompt = PromptTemplate.from_template(refine_template)
|
318 |
|
319 |
-
# Load the summarization chain
|
320 |
chain = load_summarize_chain(
|
321 |
-
llm
|
322 |
chain_type="refine",
|
323 |
question_prompt=prompt,
|
324 |
refine_prompt=refine_prompt,
|
@@ -327,11 +349,19 @@ class KeyValueExtractor:
|
|
327 |
output_key="output_text",
|
328 |
)
|
329 |
|
330 |
-
# Generate the
|
331 |
result = chain({"input_documents": split_docs}, return_only_outputs=True)
|
|
|
|
|
332 |
one_year_perfomance_summary = self.change_bullet_points(result["output_text"])
|
333 |
-
|
|
|
|
|
|
|
334 |
return one_year_perfomance_summary
|
|
|
|
|
|
|
335 |
|
336 |
def main(self,keyword):
|
337 |
|
@@ -381,19 +411,24 @@ class KeyValueExtractor:
|
|
381 |
key_value_pair_result = gr.Textbox(label="Discussed Topics", lines = 12)
|
382 |
with gr.Row(elem_id="col-container"):
|
383 |
with gr.Column(scale=1.0, min_width=0):
|
384 |
-
plot_for_day =gr.Plot(label="Sentiment for Last Day"
|
|
|
|
|
|
|
385 |
with gr.Row(elem_id="col-container"):
|
386 |
with gr.Column(scale=1.0, min_width=150):
|
387 |
analyse_sentiment = gr.Button("Analyse Sentiment For Last Day")
|
388 |
with gr.Row(elem_id="col-container"):
|
389 |
with gr.Column(scale=1.0, min_width=150, ):
|
390 |
-
one_year_summary = gr.Textbox(label="Summary For One Year
|
391 |
with gr.Row(elem_id="col-container"):
|
392 |
with gr.Column(scale=1.0, min_width=150):
|
393 |
one_year = gr.Button("Analyse One Year Summary")
|
394 |
with gr.Row(elem_id="col-container"):
|
395 |
with gr.Column(scale=1.0, min_width=0):
|
396 |
-
plot_for_year =gr.Plot(label="Sentiment for One Year"
|
|
|
|
|
397 |
with gr.Row(elem_id="col-container"):
|
398 |
with gr.Column(scale=1.0, min_width=150):
|
399 |
analyse_sentiment_for_year = gr.Button("Analyse Sentiment For One Year")
|
|
|
5 |
from langchain.chains.mapreduce import MapReduceChain
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
from langchain.chains.summarize import load_summarize_chain
|
8 |
+
|
9 |
+
from langchain_community.document_loaders import UnstructuredFileLoader
|
10 |
from langchain.prompts import PromptTemplate
|
11 |
import logging
|
12 |
import json
|
|
|
21 |
import requests
|
22 |
import gradio as gr
|
23 |
import re
|
24 |
+
from langchain_community.document_loaders import WebBaseLoader
|
25 |
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
26 |
from transformers import pipeline
|
27 |
import plotly.express as px
|
28 |
+
from langchain_community.document_loaders import CSVLoader
|
29 |
+
from langchain_community.chat_models import ChatOpenAI
|
30 |
from langchain.chains.llm import LLMChain
|
31 |
import yfinance as yf
|
32 |
import pandas as pd
|
33 |
import nltk
|
34 |
from nltk.tokenize import sent_tokenize
|
35 |
from openai import AzureOpenAI
|
36 |
+
from langchain.prompts import PromptTemplate
|
37 |
+
from langchain.chains import load_summarize_chain
|
38 |
+
from langchain.chat_models import AzureChatOpenAI
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
|
43 |
|
44 |
class KeyValueExtractor:
|
|
|
190 |
def analyze_sentiment_for_graph(self, text):
|
191 |
|
192 |
pipe = pipeline("zero-shot-classification", model=self.model)
|
193 |
+
labels=["Positive", "Negative", "Neutral"]
|
194 |
+
result = pipe(text, labels)
|
195 |
sentiment_scores = {
|
196 |
result['labels'][0]: result['scores'][0],
|
197 |
result['labels'][1]: result['scores'][1],
|
|
|
295 |
|
296 |
return bullet_string
|
297 |
|
298 |
+
def one_year_summary(self, keyword):
|
299 |
+
try:
|
300 |
+
# Step 1: Get the finance data and convert to DataFrame
|
301 |
csv_path = self.get_finance_data(keyword)
|
302 |
+
print(f"CSV path: {csv_path}") # For debugging, ensure it's correct.
|
303 |
df = self.csv_to_dataframe(csv_path)
|
304 |
+
if df is None or df.empty:
|
305 |
+
raise ValueError("The DataFrame is empty. Please check the CSV content.")
|
306 |
+
|
307 |
+
# Step 2: Save the DataFrame to a text file
|
308 |
output_file_path = self.save_dataframe_in_text_file(df)
|
309 |
+
print(f"Output file saved at: {output_file_path}")
|
310 |
+
|
311 |
+
# Step 3: Load and split the document data
|
312 |
docs = self.csv_loader(output_file_path)
|
313 |
+
if not docs:
|
314 |
+
raise ValueError("No content was loaded from the CSV file.")
|
315 |
+
|
316 |
split_docs = self.document_text_spilliter(docs)
|
317 |
+
if not split_docs:
|
318 |
+
raise ValueError("Document splitting failed. No valid chunks were created.")
|
319 |
|
320 |
+
# Step 4: Prepare the summarization prompt
|
321 |
+
prompt_template = """Analyze the Financial Details and Write a brief and concise summary of how the company performed:
|
322 |
{text}
|
323 |
CONCISE SUMMARY:"""
|
324 |
prompt = PromptTemplate.from_template(prompt_template)
|
325 |
|
326 |
+
# Step 5: Prepare the refine prompt for summarization chain
|
327 |
refine_template = (
|
328 |
"Your job is to produce a final summary\n"
|
329 |
"We have provided an existing summary up to a certain point: {existing_answer}\n"
|
330 |
+
"We have the opportunity to refine the existing summary "
|
331 |
"(only if needed) with some more context below.\n"
|
332 |
"------------\n"
|
333 |
"{text}\n"
|
334 |
"------------\n"
|
335 |
+
"Given the new context, refine the original summary. "
|
336 |
"If the context isn't useful, return the original summary."
|
337 |
+
"10 lines of summary are enough."
|
338 |
)
|
339 |
refine_prompt = PromptTemplate.from_template(refine_template)
|
340 |
|
341 |
+
# Step 6: Load the summarization chain with Azure ChatGPT
|
342 |
chain = load_summarize_chain(
|
343 |
+
llm=AzureChatOpenAI(azure_deployment="GPT-3"),
|
344 |
chain_type="refine",
|
345 |
question_prompt=prompt,
|
346 |
refine_prompt=refine_prompt,
|
|
|
349 |
output_key="output_text",
|
350 |
)
|
351 |
|
352 |
+
# Step 7: Generate the summary
|
353 |
result = chain({"input_documents": split_docs}, return_only_outputs=True)
|
354 |
+
|
355 |
+
# Step 8: Process and return the summary
|
356 |
one_year_perfomance_summary = self.change_bullet_points(result["output_text"])
|
357 |
+
|
358 |
+
# Log final summary
|
359 |
+
print(f"Generated Summary: {one_year_perfomance_summary}")
|
360 |
+
|
361 |
return one_year_perfomance_summary
|
362 |
+
except Exception as e:
|
363 |
+
print(f"Error during one_year_summary processing: {str(e)}")
|
364 |
+
return None
|
365 |
|
366 |
def main(self,keyword):
|
367 |
|
|
|
411 |
key_value_pair_result = gr.Textbox(label="Discussed Topics", lines = 12)
|
412 |
with gr.Row(elem_id="col-container"):
|
413 |
with gr.Column(scale=1.0, min_width=0):
|
414 |
+
plot_for_day =gr.Plot(label="Sentiment for Last Day")
|
415 |
+
|
416 |
+
plot_for_day.width = 500
|
417 |
+
plot_for_day.height = 600
|
418 |
with gr.Row(elem_id="col-container"):
|
419 |
with gr.Column(scale=1.0, min_width=150):
|
420 |
analyse_sentiment = gr.Button("Analyse Sentiment For Last Day")
|
421 |
with gr.Row(elem_id="col-container"):
|
422 |
with gr.Column(scale=1.0, min_width=150, ):
|
423 |
+
one_year_summary = gr.Textbox(label="Summary For One Year Performance",lines = 12)
|
424 |
with gr.Row(elem_id="col-container"):
|
425 |
with gr.Column(scale=1.0, min_width=150):
|
426 |
one_year = gr.Button("Analyse One Year Summary")
|
427 |
with gr.Row(elem_id="col-container"):
|
428 |
with gr.Column(scale=1.0, min_width=0):
|
429 |
+
plot_for_year =gr.Plot(label="Sentiment for One Year")
|
430 |
+
plot_for_day.width = 500
|
431 |
+
plot_for_day.height = 600
|
432 |
with gr.Row(elem_id="col-container"):
|
433 |
with gr.Column(scale=1.0, min_width=150):
|
434 |
analyse_sentiment_for_year = gr.Button("Analyse Sentiment For One Year")
|