Spaces:
Runtime error
Runtime error
import streamlit as st | |
from dotenv import load_dotenv | |
from utils import * | |
import uuid | |
from langchain_community.vectorstores import FAISS | |
from langchain_chroma import Chroma | |
import pandas as pd | |
st.set_page_config(page_title="Resume Screening Assistance", layout="wide") | |
custom_html = """ | |
<style> | |
h1 { | |
background-color: #e6763b; | |
padding: 20px; | |
margin: 0; | |
text-align: center; /* Center the text */ | |
} | |
img { | |
max-width: 100%; | |
height: 31px; | |
margin-right: 20px; | |
margin-bottom: 6px; | |
} | |
h1 img { | |
vertical-align: middle; | |
} | |
</style> | |
<body> | |
<h1><img src="https://www.athmick.com/static/media/athmick-logo-with-name.32abc7ca97607204825eed0610ae2eea.svg">HR Resume Copilot ... π</h1> | |
</body> | |
""" | |
# Render the custom HTML | |
st.markdown(custom_html, unsafe_allow_html=True) | |
#Creating session variables | |
if 'unique_id' not in st.session_state: | |
st.session_state['unique_id'] ='' | |
def main(): | |
load_dotenv() | |
# st.set_page_config(page_title="Resume Screening Assistance") | |
# st.title("HR - Resume Screening Assistanceπ") | |
st.subheader("I can help you in resume screening process") | |
# Upload the Job Description (pdf files) | |
job_description = st.file_uploader("JOB DESCRIPTION", type=["pdf"]) | |
# Upload the Resumes (pdf files) | |
pdf = st.file_uploader("RESUME", type=["pdf"],accept_multiple_files=True) | |
#document retrun count | |
document_count = st.text_input("No.of 'RESUMES' to return",key="2") | |
#submit button | |
submit = st.button("Help me with the analysis") | |
if submit: | |
with st.spinner('Wait for it...'): | |
#Creating a unique ID, so that we can use to query and get only the user uploaded documents from PINECONE vector store | |
st.session_state['unique_id']=uuid.uuid4().hex | |
#Create a documents list out of all the user uploaded pdf files | |
final_docs_list=create_docs(pdf,st.session_state['unique_id']) | |
#Displaying the count of resumes that have been uploaded | |
st.write("*Resumes uploaded* :"+str(len(final_docs_list))) | |
#Create embeddings instance | |
embeddings=create_embeddings_load_data() | |
#using faiss db | |
db = Chroma.from_documents(final_docs_list, embeddings) | |
job_description_txt = get_pdf_text(job_description) | |
#using faiss db for similarity search with similarity score | |
relavant_docs = db.similarity_search_with_relevance_scores(job_description_txt,k=int(document_count)) | |
data = [] | |
#For each item in relavant docs - we are displaying some info of it on the UI | |
for item in pdf: | |
# st.subheader("π "+str(item+1)) | |
resume_txt = get_pdf_text(item) | |
# #Displaying Filepath | |
# document_object = final_docs_list[item][0] | |
# file_name = document_object.metadata.get('name', None) | |
finel_name = item.name | |
# st.write("**File** : "+str(finel_name)) | |
#Introducing Expander feature | |
with st.expander('Show me π'): | |
# st.info("**Matched Vector Score** : "+str(relavant_docs[item][1])) | |
matched_result = opeani_response(resume_txt, job_description_txt) | |
matched_percentage, reason, skills_to_improve, keywords, irrelevant = get_strip_response(matched_result) | |
#Gets the summary of the current item using 'get_summary' function that we have created which uses LLM & Langchain chain | |
summary = get_summary(resume_txt) | |
# Append the information to the DataFrame | |
data.append([finel_name, matched_percentage, reason, skills_to_improve, keywords, irrelevant, summary]) | |
table_data = pd.DataFrame(data, columns=["File", "Matched Score", "Matched Reason" , "Skills to improve", "Keywords", "Irrelevant", "Summary"]) | |
# Sort the DataFrame based on the 'Matched Score' column in descending order | |
df_sorted = table_data.sort_values(by='Matched Score', ascending=False) | |
# Reset the index | |
df_sorted.reset_index(drop=True, inplace=True) | |
# Loop through each row and print in the specified format | |
for index, row in df_sorted.iterrows(): | |
st.write("**File** : "+row["File"]) | |
st.info("**Matched Score π―** : " + str(row["Matched Score"]) + "%") | |
st.write("**Matched Reason π** : " + row["Matched Reason"]) | |
st.write("**Skills to improve π―** : " + row["Skills to improve"]) | |
st.write("**Keywords ποΈ** : " + row["Keywords"]) | |
st.write("**Irrelevant π** : " + row["Irrelevant"]) | |
st.write("**Summary π** : " + row["Summary"]) | |
st.write("## Relevant Documents") | |
st.table(df_sorted) | |
# graph = ploty_graph(matched_percentage_dict) | |
# st.plotly_chart(graph) | |
csv = df_sorted.to_csv().encode('utf-8') | |
st.download_button( | |
label="Download data as CSV", | |
data=csv, | |
file_name='Result Data.csv', | |
mime='text/csv', | |
) | |
st.success("Hope I was able to save your timeβ€οΈ") | |
#Invoking main function | |
if __name__ == '__main__': | |
main() |