File size: 1,732 Bytes
3e509fb
d14ee7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7ae2b2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

import gradio as gr
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer

# Load Whisper for ASR
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")

# Load Grammar Scoring Model (CoLA)
cola_model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-CoLA")
cola_tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-CoLA")
grammar_pipeline = pipeline("text-classification", model=cola_model, tokenizer=cola_tokenizer)

# Load Grammar Correction Model (T5)
correction_pipeline = pipeline("text2text-generation", model="vennify/t5-base-grammar-correction")

def process_audio(audio):
    if audio is None:
        return "No audio provided.", "", ""

    # Step 1: Transcription
    transcription = asr_pipeline(audio)["text"]

    # Step 2: Grammar Scoring
    score_output = grammar_pipeline(transcription)[0]
    label = score_output["label"]
    confidence = score_output["score"]

    # Step 3: Grammar Correction
    corrected = correction_pipeline(transcription, max_length=128)[0]["generated_text"]

    return transcription, f"{label} ({confidence:.2f})", corrected

demo = gr.Interface(
    fn=process_audio,
    inputs=gr.Audio(sources=["microphone", "upload"], type="filepath", label="🎤 Speak or Upload Audio (.wav)"),
    outputs=[
        gr.Textbox(label="📝 Transcription"),
        gr.Textbox(label="✅ Grammar Score"),
        gr.Textbox(label="✍️ Grammar Correction")
    ],
    title="🎙️ Voice Grammar Scorer",
    description="Record or upload a WAV file. This app transcribes your voice, scores its grammar, and suggests corrections.",
)

if __name__ == "__main__":
    demo.launch()