import argparse import json import os import re import threading import mimetypes import shutil from concurrent.futures import ThreadPoolExecutor, as_completed from datetime import datetime from pathlib import Path from typing import List, Optional import datasets import pandas as pd from dotenv import load_dotenv from huggingface_hub import login import gradio as gr from scripts.reformulator import prepare_response from scripts.run_agents import ( get_single_file_description, get_zip_description, ) from scripts.text_inspector_tool import TextInspectorTool from scripts.text_web_browser import ( ArchiveSearchTool, FinderTool, FindNextTool, PageDownTool, PageUpTool, SearchInformationTool, SimpleTextBrowser, VisitTool, ) from scripts.visual_qa import visualizer from tqdm import tqdm from smolagents import ( # MANAGED_AGENT_PROMPT, CodeAgent, HfApiModel, LiteLLMModel, Model, ToolCallingAgent, ) from smolagents.agent_types import AgentText, AgentImage, AgentAudio from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types AUTHORIZED_IMPORTS = [ "requests", "zipfile", "os", "pandas", "numpy", "sympy", "json", "bs4", "pubchempy", "xml", "yahoo_finance", "Bio", "sklearn", "scipy", "pydub", "io", "PIL", "chess", "PyPDF2", "pptx", "torch", "datetime", "fractions", "csv", ] load_dotenv(override=True) login(os.getenv("HF_TOKEN")) append_answer_lock = threading.Lock() SET = "validation" custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"} # skip _ = """ ### LOAD EVALUATION DATASET eval_ds = datasets.load_dataset("gaia-benchmark/GAIA", "2023_all")[SET] eval_ds = eval_ds.rename_columns({"Question": "question", "Final answer": "true_answer", "Level": "task"}) def preprocess_file_paths(row): if len(row["file_name"]) > 0: row["file_name"] = f"data/gaia/{SET}/" + row["file_name"] return row eval_ds = eval_ds.map(preprocess_file_paths) eval_df = pd.DataFrame(eval_ds) print("Loaded evaluation dataset:") print(eval_df["task"].value_counts()) # """ user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0" BROWSER_CONFIG = { "viewport_size": 1024 * 5, "downloads_folder": "downloads_folder", "request_kwargs": { "headers": {"User-Agent": user_agent}, "timeout": 300, }, "serpapi_key": os.getenv("SERPAPI_API_KEY"), } os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True) # --- 수정된 부분: OPENAI_API_BASE의 잘못된 엔드포인트 제거 --- openai_api_base = os.getenv("OPENAI_API_BASE", "https://api.openai.com/v1") # 만약 환경변수에 불필요한 엔드포인트가 포함되어 있다면 제거합니다. if openai_api_base.endswith("/chat/completions"): openai_api_base = openai_api_base.rsplit("/chat/completions", 1)[0] model = LiteLLMModel( os.getenv("MODEL_ID", "gpt-4o-mini"), custom_role_conversions=custom_role_conversions, api_base=openai_api_base, api_key=os.getenv("OPENAI_API_KEY"), ) # --- 수정 끝 --- text_limit = 20000 ti_tool = TextInspectorTool(model, text_limit) browser = SimpleTextBrowser(**BROWSER_CONFIG) WEB_TOOLS = [ SearchInformationTool(browser), VisitTool(browser), PageUpTool(browser), PageDownTool(browser), FinderTool(browser), FindNextTool(browser), ArchiveSearchTool(browser), TextInspectorTool(model, text_limit), ] agent = CodeAgent( model=model, tools=[visualizer] + WEB_TOOLS, max_steps=5, verbosity_level=2, additional_authorized_imports=AUTHORIZED_IMPORTS, planning_interval=4, ) document_inspection_tool = TextInspectorTool(model, 20000) def stream_to_gradio( agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None, ): """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): for message in pull_messages_from_step(step_log): yield message final_answer = step_log # Last log is the run's final_answer final_answer = handle_agent_output_types(final_answer) if isinstance(final_answer, AgentText): yield gr.ChatMessage( role="assistant", content=f"**Final answer:**\n{final_answer.to_string()}\n", ) elif isinstance(final_answer, AgentImage): yield gr.ChatMessage( role="assistant", content={"path": final_answer.to_string(), "mime_type": "image/png"}, ) elif isinstance(final_answer, AgentAudio): yield gr.ChatMessage( role="assistant", content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, ) else: yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}") class GradioUI: """A one-line interface to launch your agent in Gradio""" def __init__(self, agent, file_upload_folder: str | None = None): self.agent = agent self.file_upload_folder = file_upload_folder if self.file_upload_folder is not None: if not os.path.exists(file_upload_folder): os.mkdir(file_upload_folder) def interact_with_agent(self, prompt, messages): messages.append(gr.ChatMessage(role="user", content=prompt)) yield messages for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False): messages.append(msg) yield messages yield messages def upload_file( self, file, file_uploads_log, allowed_file_types=[ "application/pdf", "application/vnd.openxmlformats-officedocument.wordprocessingml.document", "text/plain", ], ): """ Handle file uploads, default allowed types are .pdf, .docx, and .txt """ if file is None: return gr.Textbox("No file uploaded", visible=True), file_uploads_log try: mime_type, _ = mimetypes.guess_type(file.name) except Exception as e: return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log if mime_type not in allowed_file_types: return gr.Textbox("File type disallowed", visible=True), file_uploads_log # Sanitize file name original_name = os.path.basename(file.name) sanitized_name = re.sub(r"[^\w\-.]", "_", original_name) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores type_to_ext = {} for ext, t in mimetypes.types_map.items(): if t not in type_to_ext: type_to_ext[t] = ext # Ensure the extension correlates to the mime type sanitized_name = sanitized_name.split(".")[:-1] sanitized_name.append("" + type_to_ext[mime_type]) sanitized_name = "".join(sanitized_name) # Save the uploaded file to the specified folder file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name)) shutil.copy(file.name, file_path) return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] def log_user_message(self, text_input, file_uploads_log): return ( text_input + ( f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" if len(file_uploads_log) > 0 else "" ), "", ) def launch(self, **kwargs): with gr.Blocks(theme="ocean", fill_height=True) as demo: gr.Markdown("""# open Deep Research - free the AI agents! OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions. However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨ You can try a simplified version below. 👇""") stored_messages = gr.State([]) file_uploads_log = gr.State([]) chatbot = gr.Chatbot( label="open-Deep-Research", type="messages", avatar_images=( None, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", ), resizeable=True, scale=1, ) # If an upload folder is provided, enable the upload feature if self.file_upload_folder is not None: upload_file = gr.File(label="Upload a file") upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) upload_file.change( self.upload_file, [upload_file, file_uploads_log], [upload_status, file_uploads_log], ) text_input = gr.Textbox(lines=1, label="Your request") text_input.submit( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input], ).then(self.interact_with_agent, [stored_messages, chatbot], [chatbot]) demo.launch(debug=True, share=True, **kwargs) GradioUI(agent).launch()