File size: 17,853 Bytes
d129378
 
 
 
 
 
 
b68ab8a
 
f4bfa4e
 
d129378
 
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bfa4e
d8bbec8
 
 
f4bfa4e
 
 
 
d8bbec8
f4bfa4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bbec8
 
f4bfa4e
 
d8bbec8
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d129378
 
 
b68ab8a
d129378
b68ab8a
d129378
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d129378
b68ab8a
d129378
b68ab8a
 
d129378
 
 
 
 
 
 
b68ab8a
d129378
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
d129378
 
 
b68ab8a
 
 
 
 
 
d129378
b68ab8a
 
d129378
 
 
b68ab8a
 
d129378
b68ab8a
d129378
b68ab8a
 
d129378
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
d129378
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
d129378
b68ab8a
 
 
 
 
 
 
 
 
d129378
 
 
 
 
 
 
b68ab8a
d129378
 
 
d8bbec8
 
 
f4bfa4e
d8bbec8
0e1ad49
 
d8bbec8
2290df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bfa4e
 
 
d8bbec8
f4bfa4e
 
 
 
 
 
 
 
 
 
 
 
0e1ad49
 
 
 
 
 
 
f4bfa4e
 
d8bbec8
 
f4bfa4e
 
d8bbec8
 
f4bfa4e
 
 
 
d8bbec8
f4bfa4e
d8bbec8
d129378
d8bbec8
 
 
 
 
 
 
d129378
 
 
 
d8bbec8
f4bfa4e
0e1ad49
f4bfa4e
 
 
b68ab8a
 
 
d8bbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b68ab8a
 
 
d8bbec8
 
b68ab8a
 
 
 
 
 
d8bbec8
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
d8bbec8
 
 
 
 
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
d129378
d8bbec8
 
 
 
 
 
 
 
 
 
 
 
 
f4bfa4e
 
 
 
 
 
 
d8bbec8
d129378
b68ab8a
 
 
 
 
 
 
 
 
d129378
d8bbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import streamlit as st
from huggingface_hub import HfApi
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import lru_cache
import time
import requests
from collections import Counter

st.set_page_config(page_title="HF Contributions", layout="wide")
api = HfApi()


# Cache for API responses
@lru_cache(maxsize=1000)
def cached_repo_info(repo_id, repo_type):
    return api.repo_info(repo_id=repo_id, repo_type=repo_type)


@lru_cache(maxsize=1000)
def cached_list_commits(repo_id, repo_type):
    return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))


@lru_cache(maxsize=100)
def cached_list_items(username, kind):
    if kind == "model":
        return list(api.list_models(author=username))
    elif kind == "dataset":
        return list(api.list_datasets(author=username))
    elif kind == "space":
        return list(api.list_spaces(author=username))
    return []


# Function to fetch trending accounts and create stats
@lru_cache(maxsize=1)
def get_trending_accounts(limit=100):
    try:
        # Get spaces for stats calculation
        spaces_response = requests.get("https://huggingface.co/api/spaces", 
                                      params={"limit": 10000}, 
                                      timeout=30)
        
        if spaces_response.status_code == 200:
            spaces = spaces_response.json()
            
            # Count spaces by owner
            owner_counts = {}
            for space in spaces:
                if '/' in space.get('id', ''):
                    owner, _ = space.get('id', '').split('/', 1)
                else:
                    owner = space.get('owner', '')
                
                if owner != 'None':
                    owner_counts[owner] = owner_counts.get(owner, 0) + 1
            
            # Get top owners by count
            top_owners = sorted(owner_counts.items(), key=lambda x: x[1], reverse=True)[:limit]
            
            # Extract just the owner names for dropdown
            trending_authors = [owner for owner, count in top_owners]
            
            return trending_authors, top_owners
        else:
            # Fallback to API method if HTTP request fails
            trending_models = list(api.list_models(sort="trending", limit=limit))
            trending_datasets = list(api.list_datasets(sort="trending", limit=limit))
            trending_spaces = list(api.list_spaces(sort="trending", limit=limit))
            
            # Extract unique authors
            authors = set()
            for item in trending_models + trending_datasets + trending_spaces:
                if hasattr(item, "author"):
                    authors.add(item.author)
                elif hasattr(item, "id") and "/" in item.id:
                    authors.add(item.id.split("/")[0])
            
            # Return sorted list of unique authors and empty stats
            author_list = sorted(list(authors))[:limit]
            return author_list, [(author, 0) for author in author_list[:30]]
    except Exception as e:
        st.error(f"Error fetching trending accounts: {str(e)}")
        fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
        return fallback_authors, [(author, 0) for author in fallback_authors]


# Rate limiting
class RateLimiter:
    def __init__(self, calls_per_second=10):
        self.calls_per_second = calls_per_second
        self.last_call = 0

    def wait(self):
        current_time = time.time()
        time_since_last_call = current_time - self.last_call
        if time_since_last_call < (1.0 / self.calls_per_second):
            time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
        self.last_call = time.time()


rate_limiter = RateLimiter()


# Function to fetch commits for a repository (optimized)
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
    try:
        rate_limiter.wait()
        # Skip private/gated repos upfront
        repo_info = cached_repo_info(repo_id, repo_type)
        if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
            return [], []

        # Get initial commit date
        initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
        commit_dates = []
        commit_count = 0

        # Add initial commit if it's from the selected year
        if initial_commit_date.year == selected_year:
            commit_dates.append(initial_commit_date)
            commit_count += 1

        # Get all commits
        commits = cached_list_commits(repo_id, repo_type)
        for commit in commits:
            commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date()
            if commit_date.year == selected_year:
                commit_dates.append(commit_date)
                commit_count += 1

        return commit_dates, commit_count
    except Exception:
        return [], 0


# Function to get commit events for a user (optimized)
def get_commit_events(username, kind=None, selected_year=None):
    commit_dates = []
    items_with_type = []
    kinds = [kind] if kind else ["model", "dataset", "space"]

    for k in kinds:
        try:
            items = cached_list_items(username, k)
            items_with_type.extend((item, k) for item in items)
            repo_ids = [item.id for item in items]

            # Optimized parallel fetch with chunking
            chunk_size = 5  # Process 5 repos at a time
            for i in range(0, len(repo_ids), chunk_size):
                chunk = repo_ids[i:i + chunk_size]
                with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
                    future_to_repo = {
                        executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id
                        for repo_id in chunk
                    }
                    for future in as_completed(future_to_repo):
                        repo_commits, repo_count = future.result()
                        if repo_commits:  # Only extend if we got commits
                            commit_dates.extend(repo_commits)
        except Exception as e:
            st.warning(f"Error fetching {k}s for {username}: {str(e)}")

    # Create DataFrame with all commits
    df = pd.DataFrame(commit_dates, columns=["date"])
    if not df.empty:
        df = df.drop_duplicates()  # Remove any duplicate dates
    return df, items_with_type


# Calendar heatmap function (optimized)
def make_calendar_heatmap(df, title, year):
    if df.empty:
        st.info(f"No {title.lower()} found for {year}.")
        return

    # Optimize DataFrame operations
    df["count"] = 1
    df = df.groupby("date", as_index=False).sum()
    df["date"] = pd.to_datetime(df["date"])

    # Create date range more efficiently
    start = pd.Timestamp(f"{year}-01-01")
    end = pd.Timestamp(f"{year}-12-31")
    all_days = pd.date_range(start=start, end=end)

    # Optimize DataFrame creation and merging
    heatmap_data = pd.DataFrame({"date": all_days, "count": 0})
    heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y"))
    heatmap_data["count"] = heatmap_data["count_y"].fillna(0)
    heatmap_data = heatmap_data.drop("count_y", axis=1)

    # Calculate week and day of week more efficiently
    heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek
    heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7

    # Create pivot table more efficiently
    pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0)

    # Optimize month labels calculation
    month_labels = pd.date_range(start, end, freq="MS").strftime("%b")
    month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7)

    # Create custom colormap with specific boundaries
    from matplotlib.colors import ListedColormap, BoundaryNorm
    colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39']  # GitHub-style green colors
    bounds = [0, 1, 3, 11, 31, float('inf')]  # Boundaries for color transitions
    cmap = ListedColormap(colors)
    norm = BoundaryNorm(bounds, cmap.N)

    # Create plot more efficiently
    fig, ax = plt.subplots(figsize=(12, 1.2))

    # Convert pivot values to integers to ensure proper color mapping
    pivot_int = pivot.astype(int)

    # Create heatmap with explicit vmin and vmax
    sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
                square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])

    ax.set_title(f"{title}", fontsize=12, pad=10)
    ax.set_xlabel("")
    ax.set_ylabel("")
    ax.set_xticks(month_positions)
    ax.set_xticklabels(month_labels, fontsize=8)
    ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8)
    st.pyplot(fig)


# Sidebar
with st.sidebar:
    st.title("πŸ‘€ Contributor")
    
    # Fetch trending accounts with a loading spinner
    with st.spinner("Loading top trending accounts..."):
        trending_accounts, top_owners = get_trending_accounts(limit=100)
    
    # Show trending accounts list
    st.subheader("πŸ”₯ Top 30 Trending Accounts")
    
    # Display the top 30 accounts list with their scores
    st.markdown("### Trending Contributors Ranking")
    
    # Create a data frame for the table
    if top_owners:
        ranking_data = pd.DataFrame(top_owners[:30], columns=["Contributor", "Spaces Count"])
        ranking_data.index = ranking_data.index + 1  # Start index from 1 for ranking
        
        # Style the table
        st.dataframe(
            ranking_data,
            column_config={
                "Contributor": st.column_config.TextColumn("Contributor"),
                "Spaces Count": st.column_config.NumberColumn("Spaces Count", format="%d")
            },
            use_container_width=True,
            hide_index=False
        )
    
    # Add stats expander with visualization
    with st.expander("View Top 30 Contributor Chart"):
        # Create a bar chart for top 30 contributors
        if top_owners:
            chart_data = pd.DataFrame(top_owners[:30], columns=["Owner", "Spaces Count"])
            
            fig, ax = plt.subplots(figsize=(10, 8))
            bars = ax.barh(chart_data["Owner"], chart_data["Spaces Count"])
            
            # Add color gradient to bars
            for i, bar in enumerate(bars):
                bar.set_color(plt.cm.viridis(i/len(bars)))
            
            ax.set_title("Top 30 Contributors by Number of Spaces")
            ax.set_xlabel("Number of Spaces")
            plt.tight_layout()
            st.pyplot(fig)
    
    # Display trending accounts without additional filtering
    selected_trending = st.selectbox(
        "Select trending account",
        options=trending_accounts[:30],  # Limit to top 30
        index=0 if trending_accounts else None,
        key="trending_selectbox"
    )
        
        # Custom account input option
        st.markdown("<div style='text-align: center; margin: 10px 0;'>OR</div>", unsafe_allow_html=True)
        custom = st.text_input("", placeholder="Enter custom username/org")
        
        # Set username based on selection or custom input
        if custom.strip():
            username = custom.strip()
        elif selected_trending:
            username = selected_trending
        else:
            username = "facebook"  # Default fallback
    
    # Year selection
    st.subheader("πŸ—“οΈ Time Period")
    year_options = list(range(datetime.now().year, 2017, -1))
    selected_year = st.selectbox("Select Year", options=year_options)
    
    # Additional options for customization
    st.subheader("βš™οΈ Display Options")
    show_models = st.checkbox("Show Models", value=True)
    show_datasets = st.checkbox("Show Datasets", value=True)
    show_spaces = st.checkbox("Show Spaces", value=True)

# Main Content
st.title("πŸ€— Hugging Face Contributions")
if username:
    with st.spinner(f"Fetching commit data for {username}..."):
        # Display contributor rank if in top 100
        if username in trending_accounts[:30]:
            rank = trending_accounts.index(username) + 1
            st.success(f"πŸ† {username} is ranked #{rank} in the top trending contributors!")
        
        # Create a dictionary to store commits by type
        commits_by_type = {}
        commit_counts_by_type = {}
        
        # Determine which types to fetch based on checkboxes
        types_to_fetch = []
        if show_models:
            types_to_fetch.append("model")
        if show_datasets:
            types_to_fetch.append("dataset")
        if show_spaces:
            types_to_fetch.append("space")
        
        if not types_to_fetch:
            st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
            st.stop()

        # Fetch commits for each selected type
        for kind in types_to_fetch:
            try:
                items = cached_list_items(username, kind)
                repo_ids = [item.id for item in items]
                
                st.info(f"Found {len(repo_ids)} {kind}s for {username}")

                # Process repos in chunks
                chunk_size = 5
                total_commits = 0
                all_commit_dates = []

                progress_bar = st.progress(0)
                for i in range(0, len(repo_ids), chunk_size):
                    chunk = repo_ids[i:i + chunk_size]
                    with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
                        future_to_repo = {
                            executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id
                            for repo_id in chunk
                        }
                        for future in as_completed(future_to_repo):
                            repo_commits, repo_count = future.result()
                            if repo_commits:
                                all_commit_dates.extend(repo_commits)
                                total_commits += repo_count
                    
                    # Update progress
                    progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids)))
                    progress_bar.progress(progress)
                
                # Complete progress
                progress_bar.progress(1.0)

                commits_by_type[kind] = all_commit_dates
                commit_counts_by_type[kind] = total_commits

            except Exception as e:
                st.warning(f"Error fetching {kind}s for {username}: {str(e)}")
                commits_by_type[kind] = []
                commit_counts_by_type[kind] = 0

        # Calculate total commits across all types
        total_commits = sum(commit_counts_by_type.values())

        st.subheader(f"{username}'s Activity in {selected_year}")
        
        # Profile information
        profile_col1, profile_col2 = st.columns([1, 3])
        with profile_col1:
            # Try to get avatar
            try:
                avatar_url = f"https://huggingface.co/avatars/{username}"
                st.image(avatar_url, width=150)
            except:
                st.info("No profile image available")
        
        with profile_col2:
            st.metric("Total Commits", total_commits)
            
            # Show contributor rank if in top owners
            for owner, count in top_owners:
                if owner.lower() == username.lower():
                    st.metric("Spaces Count", count)
                    break
            
            st.markdown(f"[View Profile on Hugging Face](https://huggingface.co/{username})")

        # Create DataFrame for all commits
        all_commits = []
        for commits in commits_by_type.values():
            all_commits.extend(commits)
        all_df = pd.DataFrame(all_commits, columns=["date"])
        if not all_df.empty:
            all_df = all_df.drop_duplicates()  # Remove any duplicate dates

        make_calendar_heatmap(all_df, "All Commits", selected_year)

        # Metrics and heatmaps for each selected type
        cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
        
        for i, (kind, emoji, label) in enumerate([
            ("model", "🧠", "Models"),
            ("dataset", "πŸ“¦", "Datasets"),
            ("space", "πŸš€", "Spaces")
        ]):
            if kind in types_to_fetch:
                with cols[types_to_fetch.index(kind)]:
                    try:
                        total = len(cached_list_items(username, kind))
                        commits = commits_by_type.get(kind, [])
                        commit_count = commit_counts_by_type.get(kind, 0)
                        df_kind = pd.DataFrame(commits, columns=["date"])
                        if not df_kind.empty:
                            df_kind = df_kind.drop_duplicates()  # Remove any duplicate dates
                        st.metric(f"{emoji} {label}", total)
                        st.metric(f"Commits in {selected_year}", commit_count)
                        make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
                    except Exception as e:
                        st.warning(f"Error processing {label}: {str(e)}")
                        st.metric(f"{emoji} {label}", 0)
                        st.metric(f"Commits in {selected_year}", 0)
                        make_calendar_heatmap(pd.DataFrame(), f"{label} Commits", selected_year)
else:
    st.info("Please select an account from the sidebar to view contributions.")