File size: 17,853 Bytes
d129378 b68ab8a f4bfa4e d129378 b68ab8a f4bfa4e d8bbec8 f4bfa4e d8bbec8 f4bfa4e d8bbec8 f4bfa4e d8bbec8 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 b68ab8a d129378 d8bbec8 f4bfa4e d8bbec8 0e1ad49 d8bbec8 2290df0 f4bfa4e d8bbec8 f4bfa4e 0e1ad49 f4bfa4e d8bbec8 f4bfa4e d8bbec8 f4bfa4e d8bbec8 f4bfa4e d8bbec8 d129378 d8bbec8 d129378 d8bbec8 f4bfa4e 0e1ad49 f4bfa4e b68ab8a d8bbec8 b68ab8a d8bbec8 b68ab8a d8bbec8 b68ab8a d8bbec8 b68ab8a d129378 d8bbec8 f4bfa4e d8bbec8 d129378 b68ab8a d129378 d8bbec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import streamlit as st
from huggingface_hub import HfApi
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import lru_cache
import time
import requests
from collections import Counter
st.set_page_config(page_title="HF Contributions", layout="wide")
api = HfApi()
# Cache for API responses
@lru_cache(maxsize=1000)
def cached_repo_info(repo_id, repo_type):
return api.repo_info(repo_id=repo_id, repo_type=repo_type)
@lru_cache(maxsize=1000)
def cached_list_commits(repo_id, repo_type):
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))
@lru_cache(maxsize=100)
def cached_list_items(username, kind):
if kind == "model":
return list(api.list_models(author=username))
elif kind == "dataset":
return list(api.list_datasets(author=username))
elif kind == "space":
return list(api.list_spaces(author=username))
return []
# Function to fetch trending accounts and create stats
@lru_cache(maxsize=1)
def get_trending_accounts(limit=100):
try:
# Get spaces for stats calculation
spaces_response = requests.get("https://huggingface.co/api/spaces",
params={"limit": 10000},
timeout=30)
if spaces_response.status_code == 200:
spaces = spaces_response.json()
# Count spaces by owner
owner_counts = {}
for space in spaces:
if '/' in space.get('id', ''):
owner, _ = space.get('id', '').split('/', 1)
else:
owner = space.get('owner', '')
if owner != 'None':
owner_counts[owner] = owner_counts.get(owner, 0) + 1
# Get top owners by count
top_owners = sorted(owner_counts.items(), key=lambda x: x[1], reverse=True)[:limit]
# Extract just the owner names for dropdown
trending_authors = [owner for owner, count in top_owners]
return trending_authors, top_owners
else:
# Fallback to API method if HTTP request fails
trending_models = list(api.list_models(sort="trending", limit=limit))
trending_datasets = list(api.list_datasets(sort="trending", limit=limit))
trending_spaces = list(api.list_spaces(sort="trending", limit=limit))
# Extract unique authors
authors = set()
for item in trending_models + trending_datasets + trending_spaces:
if hasattr(item, "author"):
authors.add(item.author)
elif hasattr(item, "id") and "/" in item.id:
authors.add(item.id.split("/")[0])
# Return sorted list of unique authors and empty stats
author_list = sorted(list(authors))[:limit]
return author_list, [(author, 0) for author in author_list[:30]]
except Exception as e:
st.error(f"Error fetching trending accounts: {str(e)}")
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
return fallback_authors, [(author, 0) for author in fallback_authors]
# Rate limiting
class RateLimiter:
def __init__(self, calls_per_second=10):
self.calls_per_second = calls_per_second
self.last_call = 0
def wait(self):
current_time = time.time()
time_since_last_call = current_time - self.last_call
if time_since_last_call < (1.0 / self.calls_per_second):
time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
self.last_call = time.time()
rate_limiter = RateLimiter()
# Function to fetch commits for a repository (optimized)
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
try:
rate_limiter.wait()
# Skip private/gated repos upfront
repo_info = cached_repo_info(repo_id, repo_type)
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
return [], []
# Get initial commit date
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
commit_dates = []
commit_count = 0
# Add initial commit if it's from the selected year
if initial_commit_date.year == selected_year:
commit_dates.append(initial_commit_date)
commit_count += 1
# Get all commits
commits = cached_list_commits(repo_id, repo_type)
for commit in commits:
commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date()
if commit_date.year == selected_year:
commit_dates.append(commit_date)
commit_count += 1
return commit_dates, commit_count
except Exception:
return [], 0
# Function to get commit events for a user (optimized)
def get_commit_events(username, kind=None, selected_year=None):
commit_dates = []
items_with_type = []
kinds = [kind] if kind else ["model", "dataset", "space"]
for k in kinds:
try:
items = cached_list_items(username, k)
items_with_type.extend((item, k) for item in items)
repo_ids = [item.id for item in items]
# Optimized parallel fetch with chunking
chunk_size = 5 # Process 5 repos at a time
for i in range(0, len(repo_ids), chunk_size):
chunk = repo_ids[i:i + chunk_size]
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
future_to_repo = {
executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id
for repo_id in chunk
}
for future in as_completed(future_to_repo):
repo_commits, repo_count = future.result()
if repo_commits: # Only extend if we got commits
commit_dates.extend(repo_commits)
except Exception as e:
st.warning(f"Error fetching {k}s for {username}: {str(e)}")
# Create DataFrame with all commits
df = pd.DataFrame(commit_dates, columns=["date"])
if not df.empty:
df = df.drop_duplicates() # Remove any duplicate dates
return df, items_with_type
# Calendar heatmap function (optimized)
def make_calendar_heatmap(df, title, year):
if df.empty:
st.info(f"No {title.lower()} found for {year}.")
return
# Optimize DataFrame operations
df["count"] = 1
df = df.groupby("date", as_index=False).sum()
df["date"] = pd.to_datetime(df["date"])
# Create date range more efficiently
start = pd.Timestamp(f"{year}-01-01")
end = pd.Timestamp(f"{year}-12-31")
all_days = pd.date_range(start=start, end=end)
# Optimize DataFrame creation and merging
heatmap_data = pd.DataFrame({"date": all_days, "count": 0})
heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y"))
heatmap_data["count"] = heatmap_data["count_y"].fillna(0)
heatmap_data = heatmap_data.drop("count_y", axis=1)
# Calculate week and day of week more efficiently
heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek
heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7
# Create pivot table more efficiently
pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0)
# Optimize month labels calculation
month_labels = pd.date_range(start, end, freq="MS").strftime("%b")
month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7)
# Create custom colormap with specific boundaries
from matplotlib.colors import ListedColormap, BoundaryNorm
colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39'] # GitHub-style green colors
bounds = [0, 1, 3, 11, 31, float('inf')] # Boundaries for color transitions
cmap = ListedColormap(colors)
norm = BoundaryNorm(bounds, cmap.N)
# Create plot more efficiently
fig, ax = plt.subplots(figsize=(12, 1.2))
# Convert pivot values to integers to ensure proper color mapping
pivot_int = pivot.astype(int)
# Create heatmap with explicit vmin and vmax
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])
ax.set_title(f"{title}", fontsize=12, pad=10)
ax.set_xlabel("")
ax.set_ylabel("")
ax.set_xticks(month_positions)
ax.set_xticklabels(month_labels, fontsize=8)
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8)
st.pyplot(fig)
# Sidebar
with st.sidebar:
st.title("π€ Contributor")
# Fetch trending accounts with a loading spinner
with st.spinner("Loading top trending accounts..."):
trending_accounts, top_owners = get_trending_accounts(limit=100)
# Show trending accounts list
st.subheader("π₯ Top 30 Trending Accounts")
# Display the top 30 accounts list with their scores
st.markdown("### Trending Contributors Ranking")
# Create a data frame for the table
if top_owners:
ranking_data = pd.DataFrame(top_owners[:30], columns=["Contributor", "Spaces Count"])
ranking_data.index = ranking_data.index + 1 # Start index from 1 for ranking
# Style the table
st.dataframe(
ranking_data,
column_config={
"Contributor": st.column_config.TextColumn("Contributor"),
"Spaces Count": st.column_config.NumberColumn("Spaces Count", format="%d")
},
use_container_width=True,
hide_index=False
)
# Add stats expander with visualization
with st.expander("View Top 30 Contributor Chart"):
# Create a bar chart for top 30 contributors
if top_owners:
chart_data = pd.DataFrame(top_owners[:30], columns=["Owner", "Spaces Count"])
fig, ax = plt.subplots(figsize=(10, 8))
bars = ax.barh(chart_data["Owner"], chart_data["Spaces Count"])
# Add color gradient to bars
for i, bar in enumerate(bars):
bar.set_color(plt.cm.viridis(i/len(bars)))
ax.set_title("Top 30 Contributors by Number of Spaces")
ax.set_xlabel("Number of Spaces")
plt.tight_layout()
st.pyplot(fig)
# Display trending accounts without additional filtering
selected_trending = st.selectbox(
"Select trending account",
options=trending_accounts[:30], # Limit to top 30
index=0 if trending_accounts else None,
key="trending_selectbox"
)
# Custom account input option
st.markdown("<div style='text-align: center; margin: 10px 0;'>OR</div>", unsafe_allow_html=True)
custom = st.text_input("", placeholder="Enter custom username/org")
# Set username based on selection or custom input
if custom.strip():
username = custom.strip()
elif selected_trending:
username = selected_trending
else:
username = "facebook" # Default fallback
# Year selection
st.subheader("ποΈ Time Period")
year_options = list(range(datetime.now().year, 2017, -1))
selected_year = st.selectbox("Select Year", options=year_options)
# Additional options for customization
st.subheader("βοΈ Display Options")
show_models = st.checkbox("Show Models", value=True)
show_datasets = st.checkbox("Show Datasets", value=True)
show_spaces = st.checkbox("Show Spaces", value=True)
# Main Content
st.title("π€ Hugging Face Contributions")
if username:
with st.spinner(f"Fetching commit data for {username}..."):
# Display contributor rank if in top 100
if username in trending_accounts[:30]:
rank = trending_accounts.index(username) + 1
st.success(f"π {username} is ranked #{rank} in the top trending contributors!")
# Create a dictionary to store commits by type
commits_by_type = {}
commit_counts_by_type = {}
# Determine which types to fetch based on checkboxes
types_to_fetch = []
if show_models:
types_to_fetch.append("model")
if show_datasets:
types_to_fetch.append("dataset")
if show_spaces:
types_to_fetch.append("space")
if not types_to_fetch:
st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
st.stop()
# Fetch commits for each selected type
for kind in types_to_fetch:
try:
items = cached_list_items(username, kind)
repo_ids = [item.id for item in items]
st.info(f"Found {len(repo_ids)} {kind}s for {username}")
# Process repos in chunks
chunk_size = 5
total_commits = 0
all_commit_dates = []
progress_bar = st.progress(0)
for i in range(0, len(repo_ids), chunk_size):
chunk = repo_ids[i:i + chunk_size]
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
future_to_repo = {
executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id
for repo_id in chunk
}
for future in as_completed(future_to_repo):
repo_commits, repo_count = future.result()
if repo_commits:
all_commit_dates.extend(repo_commits)
total_commits += repo_count
# Update progress
progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids)))
progress_bar.progress(progress)
# Complete progress
progress_bar.progress(1.0)
commits_by_type[kind] = all_commit_dates
commit_counts_by_type[kind] = total_commits
except Exception as e:
st.warning(f"Error fetching {kind}s for {username}: {str(e)}")
commits_by_type[kind] = []
commit_counts_by_type[kind] = 0
# Calculate total commits across all types
total_commits = sum(commit_counts_by_type.values())
st.subheader(f"{username}'s Activity in {selected_year}")
# Profile information
profile_col1, profile_col2 = st.columns([1, 3])
with profile_col1:
# Try to get avatar
try:
avatar_url = f"https://huggingface.co/avatars/{username}"
st.image(avatar_url, width=150)
except:
st.info("No profile image available")
with profile_col2:
st.metric("Total Commits", total_commits)
# Show contributor rank if in top owners
for owner, count in top_owners:
if owner.lower() == username.lower():
st.metric("Spaces Count", count)
break
st.markdown(f"[View Profile on Hugging Face](https://huggingface.co/{username})")
# Create DataFrame for all commits
all_commits = []
for commits in commits_by_type.values():
all_commits.extend(commits)
all_df = pd.DataFrame(all_commits, columns=["date"])
if not all_df.empty:
all_df = all_df.drop_duplicates() # Remove any duplicate dates
make_calendar_heatmap(all_df, "All Commits", selected_year)
# Metrics and heatmaps for each selected type
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
for i, (kind, emoji, label) in enumerate([
("model", "π§ ", "Models"),
("dataset", "π¦", "Datasets"),
("space", "π", "Spaces")
]):
if kind in types_to_fetch:
with cols[types_to_fetch.index(kind)]:
try:
total = len(cached_list_items(username, kind))
commits = commits_by_type.get(kind, [])
commit_count = commit_counts_by_type.get(kind, 0)
df_kind = pd.DataFrame(commits, columns=["date"])
if not df_kind.empty:
df_kind = df_kind.drop_duplicates() # Remove any duplicate dates
st.metric(f"{emoji} {label}", total)
st.metric(f"Commits in {selected_year}", commit_count)
make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
except Exception as e:
st.warning(f"Error processing {label}: {str(e)}")
st.metric(f"{emoji} {label}", 0)
st.metric(f"Commits in {selected_year}", 0)
make_calendar_heatmap(pd.DataFrame(), f"{label} Commits", selected_year)
else:
st.info("Please select an account from the sidebar to view contributions.") |