Update app.py
Browse files
app.py
CHANGED
@@ -40,16 +40,24 @@ def cached_list_items(username, kind):
|
|
40 |
@lru_cache(maxsize=1)
|
41 |
def get_trending_accounts(limit=100):
|
42 |
try:
|
|
|
|
|
43 |
# Get spaces for stats calculation
|
44 |
spaces_response = requests.get("https://huggingface.co/api/spaces",
|
45 |
params={"limit": 10000},
|
46 |
timeout=30)
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
if spaces_response.status_code == 200:
|
49 |
spaces = spaces_response.json()
|
50 |
|
51 |
# Count spaces by owner
|
52 |
-
|
53 |
for space in spaces:
|
54 |
if '/' in space.get('id', ''):
|
55 |
owner, _ = space.get('id', '').split('/', 1)
|
@@ -57,36 +65,61 @@ def get_trending_accounts(limit=100):
|
|
57 |
owner = space.get('owner', '')
|
58 |
|
59 |
if owner != 'None':
|
60 |
-
|
61 |
-
|
62 |
-
# Get top owners by count
|
63 |
-
top_owners = sorted(owner_counts.items(), key=lambda x: x[1], reverse=True)[:limit]
|
64 |
-
|
65 |
-
# Extract just the owner names for dropdown
|
66 |
-
trending_authors = [owner for owner, count in top_owners]
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
for
|
78 |
-
if
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
87 |
st.error(f"Error fetching trending accounts: {str(e)}")
|
88 |
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
|
89 |
-
return fallback_authors, [(author, 0) for author in fallback_authors]
|
90 |
|
91 |
|
92 |
# Rate limiting
|
@@ -252,11 +285,20 @@ with st.sidebar:
|
|
252 |
ranking_data.index = ranking_data.index + 1 # Start index from 1 for ranking
|
253 |
|
254 |
# Style the table
|
|
|
|
|
|
|
255 |
st.dataframe(
|
256 |
ranking_data,
|
257 |
column_config={
|
258 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
259 |
-
"Spaces Count": st.column_config.NumberColumn("Spaces Count (based on top 500 spaces)", format="%d")
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
},
|
261 |
use_container_width=True,
|
262 |
hide_index=False
|
@@ -319,6 +361,18 @@ if username:
|
|
319 |
if username in trending_accounts[:30]:
|
320 |
rank = trending_accounts.index(username) + 1
|
321 |
st.success(f"🏆 {username} is ranked #{rank} in the top trending contributors!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
# Create a dictionary to store commits by type
|
324 |
commits_by_type = {}
|
|
|
40 |
@lru_cache(maxsize=1)
|
41 |
def get_trending_accounts(limit=100):
|
42 |
try:
|
43 |
+
trending_data = {"spaces": [], "models": []}
|
44 |
+
|
45 |
# Get spaces for stats calculation
|
46 |
spaces_response = requests.get("https://huggingface.co/api/spaces",
|
47 |
params={"limit": 10000},
|
48 |
timeout=30)
|
49 |
|
50 |
+
# Get models for stats calculation
|
51 |
+
models_response = requests.get("https://huggingface.co/api/models",
|
52 |
+
params={"limit": 10000},
|
53 |
+
timeout=30)
|
54 |
+
|
55 |
+
# Process spaces data
|
56 |
if spaces_response.status_code == 200:
|
57 |
spaces = spaces_response.json()
|
58 |
|
59 |
# Count spaces by owner
|
60 |
+
owner_counts_spaces = {}
|
61 |
for space in spaces:
|
62 |
if '/' in space.get('id', ''):
|
63 |
owner, _ = space.get('id', '').split('/', 1)
|
|
|
65 |
owner = space.get('owner', '')
|
66 |
|
67 |
if owner != 'None':
|
68 |
+
owner_counts_spaces[owner] = owner_counts_spaces.get(owner, 0) + 1
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
# Get top owners by count for spaces
|
71 |
+
top_owners_spaces = sorted(owner_counts_spaces.items(), key=lambda x: x[1], reverse=True)[:limit]
|
72 |
+
trending_data["spaces"] = top_owners_spaces
|
73 |
+
|
74 |
+
# Process models data
|
75 |
+
if models_response.status_code == 200:
|
76 |
+
models = models_response.json()
|
77 |
|
78 |
+
# Count models by owner
|
79 |
+
owner_counts_models = {}
|
80 |
+
for model in models:
|
81 |
+
if '/' in model.get('id', ''):
|
82 |
+
owner, _ = model.get('id', '').split('/', 1)
|
83 |
+
else:
|
84 |
+
owner = model.get('owner', '')
|
85 |
+
|
86 |
+
if owner != 'None':
|
87 |
+
owner_counts_models[owner] = owner_counts_models.get(owner, 0) + 1
|
88 |
|
89 |
+
# Get top owners by count for models
|
90 |
+
top_owners_models = sorted(owner_counts_models.items(), key=lambda x: x[1], reverse=True)[:limit]
|
91 |
+
trending_data["models"] = top_owners_models
|
92 |
+
|
93 |
+
# Combine rankings for overall trending (weighted average)
|
94 |
+
combined_scores = {}
|
95 |
+
|
96 |
+
# Add scores from spaces
|
97 |
+
for owner, count in trending_data["spaces"]:
|
98 |
+
if owner not in combined_scores:
|
99 |
+
combined_scores[owner] = {"spaces": 0, "models": 0, "total": 0}
|
100 |
+
combined_scores[owner]["spaces"] = count
|
101 |
+
|
102 |
+
# Add scores from models
|
103 |
+
for owner, count in trending_data["models"]:
|
104 |
+
if owner not in combined_scores:
|
105 |
+
combined_scores[owner] = {"spaces": 0, "models": 0, "total": 0}
|
106 |
+
combined_scores[owner]["models"] = count
|
107 |
+
|
108 |
+
# Calculate total score (spaces + models)
|
109 |
+
for owner in combined_scores:
|
110 |
+
combined_scores[owner]["total"] = combined_scores[owner]["spaces"] + combined_scores[owner]["models"]
|
111 |
+
|
112 |
+
# Sort by total score
|
113 |
+
sorted_combined = sorted(combined_scores.items(), key=lambda x: x[1]["total"], reverse=True)[:limit]
|
114 |
+
|
115 |
+
# Extract just the owner names for dropdown
|
116 |
+
trending_authors = [owner for owner, _ in sorted_combined]
|
117 |
+
|
118 |
+
return trending_authors, trending_data["spaces"], trending_data["models"]
|
119 |
except Exception as e:
|
120 |
st.error(f"Error fetching trending accounts: {str(e)}")
|
121 |
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
|
122 |
+
return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]
|
123 |
|
124 |
|
125 |
# Rate limiting
|
|
|
285 |
ranking_data.index = ranking_data.index + 1 # Start index from 1 for ranking
|
286 |
|
287 |
# Style the table
|
288 |
+
# Add a score column based on spaces count
|
289 |
+
ranking_data["Score"] = ranking_data["Spaces Count"].apply(lambda x: x * 10) # Multiply by 10 for a score metric
|
290 |
+
|
291 |
st.dataframe(
|
292 |
ranking_data,
|
293 |
column_config={
|
294 |
"Contributor": st.column_config.TextColumn("Contributor"),
|
295 |
+
"Spaces Count": st.column_config.NumberColumn("Spaces Count (based on top 500 spaces)", format="%d"),
|
296 |
+
"Score": st.column_config.ProgressColumn(
|
297 |
+
"Score (within TOP 500 SPACES)",
|
298 |
+
min_value=0,
|
299 |
+
max_value=ranking_data["Score"].max() * 1.1, # Add 10% to max for visual scale
|
300 |
+
format="%d pts"
|
301 |
+
)
|
302 |
},
|
303 |
use_container_width=True,
|
304 |
hide_index=False
|
|
|
361 |
if username in trending_accounts[:30]:
|
362 |
rank = trending_accounts.index(username) + 1
|
363 |
st.success(f"🏆 {username} is ranked #{rank} in the top trending contributors!")
|
364 |
+
|
365 |
+
# Find user in spaces ranking
|
366 |
+
for i, (owner, count) in enumerate(top_owners_spaces):
|
367 |
+
if owner == username:
|
368 |
+
st.info(f"🚀 Spaces Ranking: #{i+1} with {count} spaces")
|
369 |
+
break
|
370 |
+
|
371 |
+
# Find user in models ranking
|
372 |
+
for i, (owner, count) in enumerate(top_owners_models):
|
373 |
+
if owner == username:
|
374 |
+
st.info(f"🧠 Models Ranking: #{i+1} with {count} models")
|
375 |
+
break
|
376 |
|
377 |
# Create a dictionary to store commits by type
|
378 |
commits_by_type = {}
|