Update app.py
Browse files
app.py
CHANGED
@@ -270,68 +270,223 @@ def make_calendar_heatmap(df, title, year):
|
|
270 |
st.pyplot(fig)
|
271 |
|
272 |
|
273 |
-
# Function to
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
|
301 |
-
# Function to
|
302 |
-
def
|
303 |
-
|
|
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
-
#
|
310 |
-
|
311 |
-
followers = [item["followers"] for item in follower_data]
|
312 |
|
313 |
# Create the chart
|
314 |
fig, ax = plt.subplots(figsize=(12, 5))
|
315 |
-
ax.plot(dates, followers, marker='o', linestyle='-', color='#
|
316 |
|
317 |
-
#
|
318 |
-
ax.set_title(f"Follower
|
319 |
ax.set_xlabel("Date", fontsize=12)
|
320 |
ax.set_ylabel("Followers", fontsize=12)
|
321 |
|
322 |
-
#
|
323 |
ax.grid(True, linestyle='--', alpha=0.7)
|
324 |
|
325 |
-
#
|
326 |
plt.xticks(rotation=45)
|
327 |
-
|
328 |
-
# Tight layout to ensure everything fits
|
329 |
plt.tight_layout()
|
330 |
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
|
|
|
|
|
|
|
335 |
# Fetch trending accounts with a loading spinner (do this once at the beginning)
|
336 |
with st.spinner("Loading trending accounts..."):
|
337 |
trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)
|
@@ -494,26 +649,35 @@ with st.sidebar:
|
|
494 |
|
495 |
# Main Content
|
496 |
st.title("π€ Hugging Face Contributions")
|
|
|
497 |
if username:
|
498 |
with st.spinner(f"Fetching commit data for {username}..."):
|
499 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
if username in trending_accounts[:100]:
|
501 |
-
|
502 |
-
st.success(f"π {username} is ranked #{
|
503 |
|
504 |
# Find user in spaces ranking
|
505 |
-
spaces_rank = None
|
506 |
for i, (owner, count) in enumerate(top_owners_spaces):
|
507 |
if owner == username:
|
508 |
spaces_rank = i+1
|
|
|
509 |
st.info(f"π Spaces Ranking: #{spaces_rank} with {count} spaces")
|
510 |
break
|
511 |
|
512 |
# Find user in models ranking
|
513 |
-
models_rank = None
|
514 |
for i, (owner, count) in enumerate(top_owners_models):
|
515 |
if owner == username:
|
516 |
models_rank = i+1
|
|
|
517 |
st.info(f"π§ Models Ranking: #{models_rank} with {count} models")
|
518 |
break
|
519 |
|
@@ -526,6 +690,11 @@ if username:
|
|
526 |
|
527 |
if combined_info:
|
528 |
st.success(f"Combined Rankings (Top 100): {', '.join(combined_info)}")
|
|
|
|
|
|
|
|
|
|
|
529 |
|
530 |
# Create a dictionary to store commits by type
|
531 |
commits_by_type = {}
|
@@ -548,6 +717,23 @@ if username:
|
|
548 |
for kind in types_to_fetch:
|
549 |
try:
|
550 |
items = cached_list_items(username, kind)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
551 |
repo_ids = [item.id for item in items]
|
552 |
|
553 |
st.info(f"Found {len(repo_ids)} {kind}s for {username}")
|
@@ -594,14 +780,8 @@ if username:
|
|
594 |
# Profile information
|
595 |
profile_col1, profile_col2 = st.columns([1, 3])
|
596 |
with profile_col1:
|
597 |
-
#
|
598 |
-
|
599 |
-
avatar_url = f"https://huggingface.co/avatars/{username}"
|
600 |
-
st.image(avatar_url, width=150)
|
601 |
-
except:
|
602 |
-
st.info("No profile image available")
|
603 |
-
|
604 |
-
with profile_col2:
|
605 |
st.metric("Total Commits", total_commits)
|
606 |
|
607 |
# Show contributor rank if in top owners
|
@@ -611,6 +791,11 @@ if username:
|
|
611 |
break
|
612 |
|
613 |
st.markdown(f"[View Profile on Hugging Face](https://huggingface.co/{username})")
|
|
|
|
|
|
|
|
|
|
|
614 |
|
615 |
# Create DataFrame for all commits
|
616 |
all_commits = []
|
@@ -620,13 +805,78 @@ if username:
|
|
620 |
if not all_df.empty:
|
621 |
all_df = all_df.drop_duplicates() # Remove any duplicate dates
|
622 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
623 |
make_calendar_heatmap(all_df, "All Commits", selected_year)
|
624 |
|
625 |
-
#
|
626 |
-
st.subheader(
|
627 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
628 |
|
629 |
# Metrics and heatmaps for each selected type
|
|
|
630 |
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
|
631 |
|
632 |
for i, (kind, emoji, label) in enumerate([
|
@@ -652,4 +902,4 @@ if username:
|
|
652 |
st.metric(f"Commits in {selected_year}", 0)
|
653 |
make_calendar_heatmap(pd.DataFrame(), f"{label} Commits", selected_year)
|
654 |
else:
|
655 |
-
st.info("Please select an account from the sidebar to view contributions.")
|
|
|
270 |
st.pyplot(fig)
|
271 |
|
272 |
|
273 |
+
# Function to create a fancy contribution radar chart
|
274 |
+
def create_contribution_radar(username, models_count, spaces_count, datasets_count, commits_count):
|
275 |
+
# Create radar chart for contribution metrics
|
276 |
+
categories = ['Models', 'Spaces', 'Datasets', 'Activity']
|
277 |
+
values = [models_count, spaces_count, datasets_count, commits_count]
|
278 |
+
|
279 |
+
# Normalize values for better visualization
|
280 |
+
max_vals = [100, 100, 50, 500] # Reasonable max values for each category
|
281 |
+
normalized = [min(v/m, 1.0) for v, m in zip(values, max_vals)]
|
282 |
+
|
283 |
+
# Create radar chart
|
284 |
+
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
|
285 |
+
angles += angles[:1] # Close the loop
|
286 |
+
|
287 |
+
normalized += normalized[:1] # Close the loop
|
288 |
+
|
289 |
+
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw={'polar': True})
|
290 |
+
|
291 |
+
# Add background grid
|
292 |
+
ax.set_theta_offset(np.pi / 2)
|
293 |
+
ax.set_theta_direction(-1)
|
294 |
+
ax.set_thetagrids(np.degrees(angles[:-1]), categories)
|
295 |
+
|
296 |
+
# Draw the chart
|
297 |
+
ax.fill(angles, normalized, color='#4CAF50', alpha=0.25)
|
298 |
+
ax.plot(angles, normalized, color='#4CAF50', linewidth=2)
|
299 |
+
|
300 |
+
# Add value labels
|
301 |
+
for i, val in enumerate(values):
|
302 |
+
angle = angles[i]
|
303 |
+
x = normalized[i] * np.cos(angle)
|
304 |
+
y = normalized[i] * np.sin(angle)
|
305 |
+
ax.text(angle, normalized[i] + 0.05, str(val),
|
306 |
+
ha='center', va='center', fontsize=10,
|
307 |
+
fontweight='bold')
|
308 |
+
|
309 |
+
ax.set_title(f"{username}'s Contribution Profile", fontsize=15, pad=20)
|
310 |
+
|
311 |
+
return fig
|
312 |
|
313 |
|
314 |
+
# Function to create contribution distribution pie chart
|
315 |
+
def create_contribution_pie(model_commits, dataset_commits, space_commits):
|
316 |
+
labels = ['Models', 'Datasets', 'Spaces']
|
317 |
+
sizes = [model_commits, dataset_commits, space_commits]
|
318 |
|
319 |
+
# Filter out zero values
|
320 |
+
filtered_labels = [label for label, size in zip(labels, sizes) if size > 0]
|
321 |
+
filtered_sizes = [size for size in sizes if size > 0]
|
322 |
+
|
323 |
+
if not filtered_sizes:
|
324 |
+
return None # No data to show
|
325 |
+
|
326 |
+
fig, ax = plt.subplots(figsize=(6, 6))
|
327 |
+
colors = ['#FF9800', '#2196F3', '#4CAF50']
|
328 |
+
filtered_colors = [color for color, size in zip(colors, sizes) if size > 0]
|
329 |
+
|
330 |
+
# Create exploded pie chart
|
331 |
+
explode = [0.05] * len(filtered_sizes) # Explode all slices slightly
|
332 |
+
|
333 |
+
ax.pie(filtered_sizes, labels=filtered_labels, colors=filtered_colors,
|
334 |
+
autopct='%1.1f%%', startangle=90, shadow=True, explode=explode)
|
335 |
+
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
|
336 |
+
|
337 |
+
ax.set_title('Distribution of Contributions by Type', fontsize=15)
|
338 |
+
|
339 |
+
return fig
|
340 |
+
|
341 |
+
|
342 |
+
# Function to create monthly activity chart
|
343 |
+
def create_monthly_activity(df, year):
|
344 |
+
if df.empty:
|
345 |
+
return None
|
346 |
+
|
347 |
+
# Aggregate by month
|
348 |
+
df['date'] = pd.to_datetime(df['date'])
|
349 |
+
df['month'] = df['date'].dt.strftime('%b')
|
350 |
+
monthly_counts = df.groupby('month')['date'].count().reindex(
|
351 |
+
pd.date_range(start=f'{year}-01-01', end=f'{year}-12-31', freq='MS').strftime('%b')
|
352 |
+
).fillna(0)
|
353 |
+
|
354 |
+
# Create bar chart
|
355 |
+
fig, ax = plt.subplots(figsize=(12, 5))
|
356 |
+
months = monthly_counts.index
|
357 |
+
counts = monthly_counts.values
|
358 |
+
|
359 |
+
bars = ax.bar(months, counts, color='#2196F3')
|
360 |
+
|
361 |
+
# Highlight the month with most activity
|
362 |
+
if counts.max() > 0:
|
363 |
+
max_idx = counts.argmax()
|
364 |
+
bars[max_idx].set_color('#FF5722')
|
365 |
+
|
366 |
+
# Add labels and styling
|
367 |
+
ax.set_title(f'Monthly Activity in {year}', fontsize=15)
|
368 |
+
ax.set_xlabel('Month', fontsize=12)
|
369 |
+
ax.set_ylabel('Number of Contributions', fontsize=12)
|
370 |
+
|
371 |
+
# Add value labels on top of bars
|
372 |
+
for i, count in enumerate(counts):
|
373 |
+
if count > 0:
|
374 |
+
ax.text(i, count + 0.5, str(int(count)), ha='center', fontsize=10)
|
375 |
+
|
376 |
+
# Add grid for better readability
|
377 |
+
ax.grid(axis='y', linestyle='--', alpha=0.7)
|
378 |
+
|
379 |
+
plt.xticks(rotation=45)
|
380 |
+
plt.tight_layout()
|
381 |
+
|
382 |
+
return fig
|
383 |
+
|
384 |
+
|
385 |
+
# Function to render follower growth simulation
|
386 |
+
def simulate_follower_data(username, spaces_count, models_count, total_commits):
|
387 |
+
# Simulate follower growth based on contribution metrics
|
388 |
+
# This is just a simulation for visual purposes
|
389 |
+
import numpy as np
|
390 |
+
from datetime import timedelta
|
391 |
+
|
392 |
+
# Start with a base number of followers proportional to contribution metrics
|
393 |
+
base_followers = max(10, int((spaces_count * 2 + models_count * 3 + total_commits/10) / 6))
|
394 |
+
|
395 |
+
# Generate timestamps for the past year
|
396 |
+
end_date = datetime.now()
|
397 |
+
start_date = end_date - timedelta(days=365)
|
398 |
+
dates = pd.date_range(start=start_date, end=end_date, freq='W') # Weekly data points
|
399 |
+
|
400 |
+
# Generate follower growth with some randomness
|
401 |
+
followers = []
|
402 |
+
current = base_followers / 2 # Start from half the base
|
403 |
+
|
404 |
+
for i in range(len(dates)):
|
405 |
+
growth_factor = 1 + (np.random.random() * 0.1) # Random growth between 0% and 10%
|
406 |
+
current = current * growth_factor
|
407 |
+
followers.append(int(current))
|
408 |
|
409 |
+
# Ensure end value matches our base_followers estimate
|
410 |
+
followers[-1] = base_followers
|
|
|
411 |
|
412 |
# Create the chart
|
413 |
fig, ax = plt.subplots(figsize=(12, 5))
|
414 |
+
ax.plot(dates, followers, marker='o', linestyle='-', color='#9C27B0', markersize=5)
|
415 |
|
416 |
+
# Add styling
|
417 |
+
ax.set_title(f"Estimated Follower Growth for {username}", fontsize=15)
|
418 |
ax.set_xlabel("Date", fontsize=12)
|
419 |
ax.set_ylabel("Followers", fontsize=12)
|
420 |
|
421 |
+
# Add grid for better readability
|
422 |
ax.grid(True, linestyle='--', alpha=0.7)
|
423 |
|
424 |
+
# Format date axis
|
425 |
plt.xticks(rotation=45)
|
|
|
|
|
426 |
plt.tight_layout()
|
427 |
|
428 |
+
return fig
|
429 |
+
|
430 |
+
|
431 |
+
# Function to create ranking position visualization
|
432 |
+
def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
|
433 |
+
if not (overall_rank or spaces_rank or models_rank):
|
434 |
+
return None
|
435 |
+
|
436 |
+
# Create a horizontal bar chart for rankings
|
437 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
438 |
+
|
439 |
+
categories = []
|
440 |
+
positions = []
|
441 |
+
colors = []
|
442 |
+
|
443 |
+
if overall_rank:
|
444 |
+
categories.append('Overall')
|
445 |
+
positions.append(101 - overall_rank) # Invert rank for visualization (higher is better)
|
446 |
+
colors.append('#673AB7')
|
447 |
+
|
448 |
+
if spaces_rank:
|
449 |
+
categories.append('Spaces')
|
450 |
+
positions.append(101 - spaces_rank)
|
451 |
+
colors.append('#2196F3')
|
452 |
+
|
453 |
+
if models_rank:
|
454 |
+
categories.append('Models')
|
455 |
+
positions.append(101 - models_rank)
|
456 |
+
colors.append('#FF9800')
|
457 |
+
|
458 |
+
# Create horizontal bars
|
459 |
+
bars = ax.barh(categories, positions, color=colors, alpha=0.7)
|
460 |
+
|
461 |
+
# Add rank values as text
|
462 |
+
for i, bar in enumerate(bars):
|
463 |
+
rank_val = 0
|
464 |
+
if categories[i] == 'Overall': rank_val = overall_rank
|
465 |
+
elif categories[i] == 'Spaces': rank_val = spaces_rank
|
466 |
+
elif categories[i] == 'Models': rank_val = models_rank
|
467 |
+
|
468 |
+
ax.text(bar.get_width() + 1, bar.get_y() + bar.get_height()/2,
|
469 |
+
f'Rank #{rank_val}', va='center', fontsize=10, fontweight='bold')
|
470 |
+
|
471 |
+
# Set chart properties
|
472 |
+
ax.set_xlim(0, 100)
|
473 |
+
ax.set_title(f"Ranking Positions for {username} (Top 100)", fontsize=15)
|
474 |
+
ax.set_xlabel("Percentile (higher is better)", fontsize=12)
|
475 |
+
|
476 |
+
# Add a vertical line at 90th percentile to highlight top 10
|
477 |
+
ax.axvline(x=90, color='red', linestyle='--', alpha=0.5)
|
478 |
+
ax.text(91, 0.5, 'Top 10', color='red', fontsize=10, rotation=90, va='center')
|
479 |
+
|
480 |
+
# Invert x-axis to show ranking position more intuitively
|
481 |
+
ax.invert_xaxis()
|
482 |
+
|
483 |
+
plt.tight_layout()
|
484 |
+
return fig
|
485 |
|
486 |
|
487 |
+
# Import additional libraries for advanced visualizations
|
488 |
+
import numpy as np
|
489 |
+
|
490 |
# Fetch trending accounts with a loading spinner (do this once at the beginning)
|
491 |
with st.spinner("Loading trending accounts..."):
|
492 |
trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)
|
|
|
649 |
|
650 |
# Main Content
|
651 |
st.title("π€ Hugging Face Contributions")
|
652 |
+
|
653 |
if username:
|
654 |
with st.spinner(f"Fetching commit data for {username}..."):
|
655 |
+
# Initialize variables for tracking
|
656 |
+
overall_rank = None
|
657 |
+
spaces_rank = None
|
658 |
+
models_rank = None
|
659 |
+
spaces_count = 0
|
660 |
+
models_count = 0
|
661 |
+
datasets_count = 0
|
662 |
+
|
663 |
+
# Display contributor rank if in top 100
|
664 |
if username in trending_accounts[:100]:
|
665 |
+
overall_rank = trending_accounts.index(username) + 1
|
666 |
+
st.success(f"π {username} is ranked #{overall_rank} in the top trending contributors!")
|
667 |
|
668 |
# Find user in spaces ranking
|
|
|
669 |
for i, (owner, count) in enumerate(top_owners_spaces):
|
670 |
if owner == username:
|
671 |
spaces_rank = i+1
|
672 |
+
spaces_count = count
|
673 |
st.info(f"π Spaces Ranking: #{spaces_rank} with {count} spaces")
|
674 |
break
|
675 |
|
676 |
# Find user in models ranking
|
|
|
677 |
for i, (owner, count) in enumerate(top_owners_models):
|
678 |
if owner == username:
|
679 |
models_rank = i+1
|
680 |
+
models_count = count
|
681 |
st.info(f"π§ Models Ranking: #{models_rank} with {count} models")
|
682 |
break
|
683 |
|
|
|
690 |
|
691 |
if combined_info:
|
692 |
st.success(f"Combined Rankings (Top 100): {', '.join(combined_info)}")
|
693 |
+
|
694 |
+
# Add ranking visualization
|
695 |
+
rank_chart = create_ranking_chart(username, overall_rank, spaces_rank, models_rank)
|
696 |
+
if rank_chart:
|
697 |
+
st.pyplot(rank_chart)
|
698 |
|
699 |
# Create a dictionary to store commits by type
|
700 |
commits_by_type = {}
|
|
|
717 |
for kind in types_to_fetch:
|
718 |
try:
|
719 |
items = cached_list_items(username, kind)
|
720 |
+
|
721 |
+
# Update counts for radar chart
|
722 |
+
if kind == "model":
|
723 |
+
models_count = len(items)
|
724 |
+
elif kind == "dataset":
|
725 |
+
|
726 |
+
|
727 |
+
items = cached_list_items(username, kind)
|
728 |
+
|
729 |
+
# Update counts for radar chart
|
730 |
+
if kind == "model":
|
731 |
+
models_count = len(items)
|
732 |
+
elif kind == "dataset":
|
733 |
+
datasets_count = len(items)
|
734 |
+
elif kind == "space":
|
735 |
+
spaces_count = len(items)
|
736 |
+
|
737 |
repo_ids = [item.id for item in items]
|
738 |
|
739 |
st.info(f"Found {len(repo_ids)} {kind}s for {username}")
|
|
|
780 |
# Profile information
|
781 |
profile_col1, profile_col2 = st.columns([1, 3])
|
782 |
with profile_col1:
|
783 |
+
# Skip avatar image display since it's causing problems
|
784 |
+
st.info(f"Profile: {username}")
|
|
|
|
|
|
|
|
|
|
|
|
|
785 |
st.metric("Total Commits", total_commits)
|
786 |
|
787 |
# Show contributor rank if in top owners
|
|
|
791 |
break
|
792 |
|
793 |
st.markdown(f"[View Profile on Hugging Face](https://huggingface.co/{username})")
|
794 |
+
|
795 |
+
with profile_col2:
|
796 |
+
# Display contribution radar chart
|
797 |
+
radar_fig = create_contribution_radar(username, models_count, spaces_count, datasets_count, total_commits)
|
798 |
+
st.pyplot(radar_fig)
|
799 |
|
800 |
# Create DataFrame for all commits
|
801 |
all_commits = []
|
|
|
805 |
if not all_df.empty:
|
806 |
all_df = all_df.drop_duplicates() # Remove any duplicate dates
|
807 |
|
808 |
+
# Monthly activity chart
|
809 |
+
st.subheader(f"Monthly Activity Pattern ({selected_year})")
|
810 |
+
monthly_fig = create_monthly_activity(all_df, selected_year)
|
811 |
+
if monthly_fig:
|
812 |
+
st.pyplot(monthly_fig)
|
813 |
+
else:
|
814 |
+
st.info(f"No activity data available for {username} in {selected_year}")
|
815 |
+
|
816 |
+
# Calendar heatmap for all commits
|
817 |
+
st.subheader(f"Contribution Calendar ({selected_year})")
|
818 |
make_calendar_heatmap(all_df, "All Commits", selected_year)
|
819 |
|
820 |
+
# Contribution distribution pie chart
|
821 |
+
st.subheader("Contribution Distribution by Type")
|
822 |
+
model_commits = commit_counts_by_type.get("model", 0)
|
823 |
+
dataset_commits = commit_counts_by_type.get("dataset", 0)
|
824 |
+
space_commits = commit_counts_by_type.get("space", 0)
|
825 |
+
|
826 |
+
pie_chart = create_contribution_pie(model_commits, dataset_commits, space_commits)
|
827 |
+
if pie_chart:
|
828 |
+
st.pyplot(pie_chart)
|
829 |
+
else:
|
830 |
+
st.info("No contribution data available to show distribution")
|
831 |
+
|
832 |
+
# Follower growth simulation
|
833 |
+
st.subheader(f"Follower Growth Simulation")
|
834 |
+
st.caption("Based on contribution metrics - for visualization purposes only")
|
835 |
+
follower_chart = simulate_follower_data(username, spaces_count, models_count, total_commits)
|
836 |
+
st.pyplot(follower_chart)
|
837 |
+
|
838 |
+
# Add analysis message
|
839 |
+
if total_commits > 0:
|
840 |
+
st.subheader("π Analytics Summary")
|
841 |
+
|
842 |
+
# Contribution pattern analysis
|
843 |
+
monthly_df = pd.DataFrame(all_commits, columns=["date"])
|
844 |
+
monthly_df['date'] = pd.to_datetime(monthly_df['date'])
|
845 |
+
monthly_df['month'] = monthly_df['date'].dt.month
|
846 |
+
|
847 |
+
if not monthly_df.empty:
|
848 |
+
most_active_month = monthly_df['month'].value_counts().idxmax()
|
849 |
+
month_name = datetime(2020, most_active_month, 1).strftime('%B')
|
850 |
+
|
851 |
+
st.markdown(f"""
|
852 |
+
### Activity Analysis for {username}
|
853 |
+
|
854 |
+
- **Total Activity**: {total_commits} contributions in {selected_year}
|
855 |
+
- **Most Active Month**: {month_name} with {monthly_df['month'].value_counts().max()} contributions
|
856 |
+
- **Repository Breakdown**: {models_count} Models, {spaces_count} Spaces, {datasets_count} Datasets
|
857 |
+
""")
|
858 |
+
|
859 |
+
# Add ranking context if available
|
860 |
+
if overall_rank:
|
861 |
+
percentile = 100 - overall_rank
|
862 |
+
st.markdown(f"""
|
863 |
+
### Ranking Analysis
|
864 |
+
|
865 |
+
- **Overall Ranking**: #{overall_rank} (Top {percentile}% of contributors)
|
866 |
+
""")
|
867 |
+
|
868 |
+
if spaces_rank and spaces_rank <= 10:
|
869 |
+
st.markdown(f"- π **Elite Spaces Contributor**: Top 10 ({spaces_rank}) in Spaces contributions")
|
870 |
+
elif spaces_rank and spaces_rank <= 30:
|
871 |
+
st.markdown(f"- β¨ **Outstanding Spaces Contributor**: Top 30 ({spaces_rank}) in Spaces contributions")
|
872 |
+
|
873 |
+
if models_rank and models_rank <= 10:
|
874 |
+
st.markdown(f"- π **Elite Models Contributor**: Top 10 ({models_rank}) in Models contributions")
|
875 |
+
elif models_rank and models_rank <= 30:
|
876 |
+
st.markdown(f"- β¨ **Outstanding Models Contributor**: Top 30 ({models_rank}) in Models contributions")
|
877 |
|
878 |
# Metrics and heatmaps for each selected type
|
879 |
+
st.subheader("Detailed Category Analysis")
|
880 |
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
|
881 |
|
882 |
for i, (kind, emoji, label) in enumerate([
|
|
|
902 |
st.metric(f"Commits in {selected_year}", 0)
|
903 |
make_calendar_heatmap(pd.DataFrame(), f"{label} Commits", selected_year)
|
904 |
else:
|
905 |
+
st.info("Please select an account from the sidebar to view contributions.")
|