File size: 20,052 Bytes
bce439c
9632d12
 
 
0e14842
 
bce439c
0e14842
bce439c
fda85af
0e14842
2490d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9632d12
 
 
 
 
2490d71
0e14842
bce439c
9eede63
0e14842
2490d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e14842
 
 
 
9632d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bce439c
 
 
 
 
 
 
 
 
 
 
 
0e14842
 
fda85af
 
2490d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bce439c
0e14842
9632d12
 
 
 
 
 
 
 
 
 
 
0e14842
 
c6fc0ce
bce439c
c6fc0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf65a8f
c6fc0ce
0e14842
 
c6fc0ce
 
 
9632d12
c6fc0ce
 
 
 
 
 
 
 
 
 
 
2490d71
c6fc0ce
 
 
9632d12
c6fc0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2490d71
c6fc0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2490d71
c6fc0ce
 
 
 
 
 
 
2490d71
c6fc0ce
 
 
 
 
 
 
 
 
 
 
 
 
fda85af
9632d12
 
 
bce439c
2490d71
c6fc0ce
 
 
 
 
 
 
2490d71
9632d12
 
 
 
 
2490d71
 
 
 
c6fc0ce
2490d71
c6fc0ce
 
2490d71
c6fc0ce
 
 
 
2490d71
 
 
 
 
 
 
 
 
 
 
 
c6fc0ce
 
 
 
2490d71
 
 
c6fc0ce
 
 
 
bce439c
 
 
 
 
 
 
 
 
fda85af
bce439c
2490d71
c6fc0ce
 
 
 
0e14842
c6fc0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e14842
2490d71
 
c6fc0ce
2490d71
 
 
 
 
8d456ed
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# Apply more comprehensive patches to Gradio's utility functions
import gradio_client.utils
import types

# Patch 1: Fix the _json_schema_to_python_type function
original_json_schema = gradio_client.utils._json_schema_to_python_type

def patched_json_schema(schema, defs=None):
    # Handle boolean values directly
    if isinstance(schema, bool):
        return "bool"
    
    # Handle cases where 'additionalProperties' is a boolean
    try:
        if "additionalProperties" in schema and isinstance(schema["additionalProperties"], bool):
            schema["additionalProperties"] = {"type": "any"}
    except (TypeError, KeyError):
        pass
    
    # Call the original function
    try:
        return original_json_schema(schema, defs)
    except Exception as e:
        # Fallback to a safe value when the schema can't be parsed
        return "any"

# Replace the original function with our patched version
gradio_client.utils._json_schema_to_python_type = patched_json_schema

# Create permanent storage directory
SAVE_DIR = "saved_images"  # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

# Safe settings for model loading
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/flux-chatgpt-ghibli-lora"

def load_model_with_retry(max_retries=5):
    for attempt in range(max_retries):
        try:
            print(f"Loading model attempt {attempt+1}/{max_retries}...")
            pipeline = DiffusionPipeline.from_pretrained(
                repo_id, 
                torch_dtype=torch.bfloat16,
                use_safetensors=True,
                resume_download=True
            )
            print("Model loaded successfully, loading LoRA weights...")
            pipeline.load_lora_weights(adapter_id)
            pipeline = pipeline.to(device)
            print("Pipeline ready!")
            return pipeline
        except Exception as e:
            if attempt < max_retries - 1:
                wait_time = 10 * (attempt + 1)
                print(f"Error loading model: {e}. Retrying in {wait_time} seconds...")
                import time
                time.sleep(wait_time)
            else:
                raise Exception(f"Failed to load model after {max_retries} attempts: {e}")

# Load the model
pipeline = load_model_with_retry()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def save_generated_image(image, prompt):
    # Generate unique filename with timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    
    # Save the image
    image.save(filepath)
    
    # Save metadata
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    
    return filepath

def load_generated_images():
    if not os.path.exists(SAVE_DIR):
        return []
    
    # Load all images from the directory
    image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR) 
                  if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
    # Sort by creation time (newest first)
    image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
    return image_files

@spaces.GPU(duration=120)
def inference(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    lora_scale: float,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    # Error handling for the inference process
    try:
        image = pipeline(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            joint_attention_kwargs={"scale": lora_scale},
        ).images[0]
        
        # Save the generated image
        filepath = save_generated_image(image, prompt)
        
        # Return the image, seed, and updated gallery
        return image, seed, load_generated_images()
    except Exception as e:
        # Log the error and return a simple error image
        print(f"Error during inference: {e}")
        error_img = Image.new('RGB', (width, height), color='red')
        return error_img, seed, load_generated_images()

examples = [
    "Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet, standing heroically on a lush alien planet, vibrant flowers blooming around, soft sunlight illuminating the scene, a gentle breeze rustling the leaves. The armor reflects the pink and purple hues of the alien sunset, creating an ethereal glow around the figure. [trigger]",
    
    "Ghibli style young mechanic girl in a floating workshop, surrounded by hovering tools and glowing mechanical parts, her blue overalls covered in oil stains, tinkering with a semi-transparent robot companion. Magical sparks fly as she works, while floating islands with waterfalls drift past her open workshop window. [trigger]",
    
    "Ghibli style ancient forest guardian robot, covered in moss and flowering vines, sitting peacefully in a crystal-clear lake. Its gentle eyes glow with soft blue light, while bioluminescent dragonflies dance around its weathered metal frame. Ancient tech symbols on its surface pulse with a gentle rhythm. [trigger]",
    
    "Ghibli style sky whale transport ship, its metallic skin adorned with traditional Japanese patterns, gliding through cotton candy clouds at sunrise. Small floating gardens hang from its sides, where workers in futuristic kimonos tend to glowing plants. Rainbow auroras shimmer in the background. [trigger]",
    
    "Ghibli style cyber-shrine maiden with flowing holographic robes, performing a ritual dance among floating lanterns and digital cherry blossoms. Her traditional headdress emits soft light patterns, while spirit-like AI constructs swirl around her in elegant patterns. The scene is set in a modern shrine with both ancient wood and sleek chrome elements. [trigger]",
    
    "Ghibli style robot farmer tending to floating rice paddies in the sky, wearing a traditional straw hat with advanced sensors. Its gentle movements create ripples in the water as it plants glowing rice seedlings. Flying fish leap between the terraced fields, leaving trails of sparkles in their wake, while future Tokyo's spires gleam in the distance. [trigger]"
]

# Enhanced CSS for a more visually refined UI
css = """
:root {
    --primary-color: #6a92cc;
    --primary-hover: #557ab8;
    --secondary-color: #f4c062;
    --background-color: #f7f9fc;
    --panel-background: #ffffff;
    --text-color: #333333;
    --border-radius: 12px;
    --shadow: 0 4px 12px rgba(0,0,0,0.08);
    --font-main: 'Poppins', -apple-system, BlinkMacSystemFont, sans-serif;
}

body {
    background-color: var(--background-color);
    font-family: var(--font-main);
}

.gradio-container {
    margin: 0 auto;
    max-width: 1200px !important;
}

.main-header {
    text-align: center;
    padding: 2rem 1rem 1rem;
    background: linear-gradient(90deg, #6a92cc 0%, #8f7fc8 100%);
    color: white;
    margin-bottom: 2rem;
    border-radius: var(--border-radius);
    box-shadow: var(--shadow);
}

.main-header h1 {
    font-size: 2.5rem;
    margin-bottom: 0.5rem;
    font-weight: 700;
    text-shadow: 0 2px 4px rgba(0,0,0,0.2);
}

.main-header p {
    font-size: 1rem;
    margin-bottom: 0.5rem;
    opacity: 0.9;
}

.main-header a {
    color: var(--secondary-color);
    text-decoration: none;
    font-weight: 600;
    transition: all 0.2s ease;
}

.main-header a:hover {
    text-decoration: underline;
    opacity: 0.9;
}

.container {
    background-color: var(--panel-background);
    padding: 1.5rem;
    border-radius: var(--border-radius);
    box-shadow: var(--shadow);
    margin-bottom: 1.5rem;
}

button.primary {
    background: var(--primary-color) !important;
    border: none !important;
    color: white !important;
    padding: 10px 20px !important;
    border-radius: 8px !important;
    font-weight: 600 !important;
    box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important;
    transition: all 0.2s ease !important;
}

button.primary:hover {
    background: var(--primary-hover) !important;
    transform: translateY(-2px) !important;
    box-shadow: 0 4px 8px rgba(0,0,0,0.15) !important;
}

button.secondary {
    background: white !important;
    border: 1px solid #ddd !important;
    color: var(--text-color) !important;
    padding: 10px 20px !important;
    border-radius: 8px !important;
    font-weight: 500 !important;
    box-shadow: 0 2px 5px rgba(0,0,0,0.05) !important;
    transition: all 0.2s ease !important;
}

button.secondary:hover {
    background: #f5f5f5 !important;
    transform: translateY(-2px) !important;
}

.gr-box {
    border-radius: var(--border-radius) !important;
    border: 1px solid #e0e0e0 !important;
}

.gr-panel {
    border-radius: var(--border-radius) !important;
}

.gr-input {
    border-radius: 8px !important;
    border: 1px solid #ddd !important;
    padding: 12px !important;
}

.gr-form {
    border-radius: var(--border-radius) !important;
    background-color: var(--panel-background) !important;
}

.gr-accordion {
    border-radius: var(--border-radius) !important;
    overflow: hidden !important;
}

.gr-button {
    border-radius: 8px !important;
}

.gallery-item {
    border-radius: var(--border-radius) !important;
    transition: all 0.3s ease !important;
}

.gallery-item:hover {
    transform: scale(1.02) !important;
    box-shadow: 0 6px 15px rgba(0,0,0,0.1) !important;
}

.tabs {
    border-radius: var(--border-radius) !important;
    overflow: hidden !important;
}

footer {
    display: none !important;
}

.settings-accordion legend span {
    font-weight: 600 !important;
}

.example-prompt {
    font-size: 0.9rem;
    color: #555;
    padding: 8px;
    background: #f5f7fa;
    border-radius: 6px;
    border-left: 3px solid var(--primary-color);
    margin-bottom: 8px;
    cursor: pointer;
    transition: all 0.2s;
}

.example-prompt:hover {
    background: #eef2f8;
}

/* Status indicators */
.status-generating {
    color: #ffa200;
    font-weight: 500;
    display: flex;
    align-items: center;
    gap: 8px;
}

.status-generating::before {
    content: "";
    display: inline-block;
    width: 12px;
    height: 12px;
    border-radius: 50%;
    background-color: #ffa200;
    animation: pulse 1.5s infinite;
}

.status-complete {
    color: #00c853;
    font-weight: 500;
    display: flex;
    align-items: center;
    gap: 8px;
}

.status-complete::before {
    content: "";
    display: inline-block;
    width: 12px;
    height: 12px;
    border-radius: 50%;
    background-color: #00c853;
}

@keyframes pulse {
    0% {
        opacity: 0.6;
    }
    50% {
        opacity: 1;
    }
    100% {
        opacity: 0.6;
    }
}

/* Custom accordions and tabs styling */
.gr-accordion-title {
    font-weight: 600 !important;
    color: var(--text-color) !important;
}

.tabs button {
    font-weight: 500 !important;
    padding: 10px 16px !important;
}

.tabs button.selected {
    font-weight: 600 !important;
    color: var(--primary-color) !important;
    background: rgba(106, 146, 204, 0.1) !important;
}

/* Improve slider appearance */
.gr-slider-container {
    padding: 10px 0 !important;
}

/* Enhanced Markdown content */
.gr-prose h3 {
    font-weight: 600 !important;
    color: var(--primary-color) !important;
    margin-bottom: 1rem !important;
}
"""

# Use a cleaner, more visual UI configuration
with gr.Blocks(css=css, analytics_enabled=False, theme="soft") as demo:
    with gr.Column():
        # Custom header with improved styling
        gr.HTML('''
        <div class="main-header">
            <h1>✨ FLUX Ghibli LoRA Generator ✨</h1>
            <p>Community: <a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a></p>
        </div>
        ''')
        
        with gr.Row():
            with gr.Column(scale=3):
                with gr.Group(elem_classes="container"):
                    prompt = gr.Textbox(
                        label="Enter your imagination",
                        placeholder="Describe your Ghibli-style image here...",
                        lines=3
                    )
                    
                    with gr.Row():
                        run_button = gr.Button("✨ Generate Image", elem_classes="primary")
                        clear_button = gr.Button("Clear", elem_classes="secondary")
                    
                    with gr.Accordion("Advanced Settings", open=False, elem_classes="settings-accordion"):
                        with gr.Row():
                            seed = gr.Slider(
                                label="Seed",
                                minimum=0,
                                maximum=MAX_SEED,
                                step=1,
                                value=42,
                            )
                            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                        with gr.Row():
                            width = gr.Slider(
                                label="Width",
                                minimum=256,
                                maximum=MAX_IMAGE_SIZE,
                                step=32,
                                value=1024,
                            )
                            height = gr.Slider(
                                label="Height",
                                minimum=256,
                                maximum=MAX_IMAGE_SIZE,
                                step=32,
                                value=768,
                            )

                        with gr.Row():
                            guidance_scale = gr.Slider(
                                label="Guidance scale",
                                minimum=0.0,
                                maximum=10.0,
                                step=0.1,
                                value=3.5,
                            )
                            
                        with gr.Row():
                            num_inference_steps = gr.Slider(
                                label="Steps",
                                minimum=1,
                                maximum=50,
                                step=1,
                                value=30,
                            )
                            lora_scale = gr.Slider(
                                label="LoRA scale",
                                minimum=0.0,
                                maximum=1.0,
                                step=0.1,
                                value=1.0,
                            )
                
                with gr.Group(elem_classes="container"):
                    gr.Markdown("### ✨ Example Prompts")
                    # Create HTML for examples manually
                    examples_html = '\n'.join([f'<div class="example-prompt">{example}</div>' for example in examples])
                    example_container = gr.HTML(examples_html)
            
            with gr.Column(scale=4):
                with gr.Group(elem_classes="container"):
                    # Image result container with status indicator
                    with gr.Group():
                        generation_status = gr.HTML('<div class="status-complete">Ready to generate</div>')
                        result = gr.Image(label="Generated Image", elem_id="result-image")
                        seed_text = gr.Number(label="Used Seed", value=42)
    
    with gr.Tabs(elem_classes="tabs") as tabs:
        with gr.TabItem("Gallery"):
            with gr.Group(elem_classes="container"):
                gallery_header = gr.Markdown("### 🖼️ Your Generated Masterpieces")
                with gr.Row():
                    refresh_btn = gr.Button("🔄 Refresh Gallery", elem_classes="secondary")
                generated_gallery = gr.Gallery(
                    label="Generated Images",
                    columns=3,
                    value=load_generated_images(),
                    height="500px",
                    elem_classes="gallery-item"
                )

    # Event handlers
    def refresh_gallery():
        return load_generated_images()

    def clear_output():
        return "", gr.update(value=None), seed, '<div class="status-complete">Ready to generate</div>'
    
    def before_generate():
        return '<div class="status-generating">Generating image...</div>'
    
    def after_generate(image, seed, gallery):
        return image, seed, gallery, '<div class="status-complete">Generation complete!</div>'

    refresh_btn.click(
        fn=refresh_gallery,
        inputs=None,
        outputs=generated_gallery,
    )
    
    clear_button.click(
        fn=clear_output,
        inputs=None,
        outputs=[prompt, result, seed_text, generation_status]
    )
    
    # Update with status indicators for generation process
    run_button.click(
        fn=before_generate,
        inputs=None,
        outputs=generation_status,
    ).then(
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed_text, generated_gallery],
    ).then(
        fn=after_generate,
        inputs=[result, seed_text, generated_gallery],
        outputs=[result, seed_text, generated_gallery, generation_status],
    )
    
    prompt.submit(
        fn=before_generate,
        inputs=None,
        outputs=generation_status,
    ).then(
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed_text, generated_gallery],
    ).then(
        fn=after_generate,
        inputs=[result, seed_text, generated_gallery],
        outputs=[result, seed_text, generated_gallery, generation_status],
    )
    
    # Custom JavaScript for handling example prompts
    gr.HTML("""
    <script>
    document.addEventListener('DOMContentLoaded', function() {
        // Add click handlers to example prompts
        setTimeout(() => {
            const examples = document.querySelectorAll('.example-prompt');
            const promptInput = document.querySelector('textarea');
            
            examples.forEach(example => {
                example.addEventListener('click', function() {
                    promptInput.value = this.textContent.trim();
                    // Trigger input event to update Gradio's state
                    const event = new Event('input', { bubbles: true });
                    promptInput.dispatchEvent(event);
                });
            });
        }, 1000); // Small delay to ensure elements are loaded
    });
    </script>
    """)

# Launch with fallback options
try:
    demo.queue(concurrency_count=1, max_size=20)
    demo.launch(debug=True, show_api=False)
except Exception as e:
    print(f"Error during launch: {e}")
    print("Trying alternative launch configuration...")
    # Skip queue and simplify launch parameters
    demo.launch(debug=True, show_api=False, share=False)