aiqtech commited on
Commit
8e4cf4d
·
verified ·
1 Parent(s): e46ee0d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -127
README.md CHANGED
@@ -12,130 +12,3 @@ emoji: 🎥
12
  colorFrom: green
13
  colorTo: indigo
14
  ---
15
- ## Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models<br><sub>Official PyTorch Implementation</sub>
16
-
17
-
18
- [![Arxiv](https://img.shields.io/badge/Arxiv-b31b1b.svg)](https://arxiv.org/abs/2407.15642)
19
- [![Project Page](https://img.shields.io/badge/Project-Website-blue)](https://maxin-cn.github.io/cinemo_project/)
20
-
21
-
22
- This repo contains pre-trained weights, and sampling code for our paper exploring image animation with motion diffusion models (Cinemo). You can find more visualizations on our [project page](https://maxin-cn.github.io/cinemo_project/).
23
-
24
- In this project, we propose a novel method called Cinemo, which can perform motion-controllable image animation with strong consistency and smoothness. To improve motion smoothness, Cinemo learns the distribution of motion residuals, rather than directly generating subsequent frames. Additionally, a structural similarity index-based method is proposed to control the motion intensity. Furthermore, we propose a noise refinement technique based on discrete cosine transformation to ensure temporal consistency. These three methods help Cinemo generate highly consistent, smooth, and motion-controlled image animation results. Compared to previous methods, Cinemo offers simpler and more precise user control and better generative performance.
25
-
26
- <div align="center">
27
- <img src="visuals/pipeline.svg">
28
- </div>
29
-
30
- ## News
31
-
32
- - (🔥 New) Jul. 23, 2024. 💥 Our paper is released on [arxiv](https://arxiv.org/abs/2407.15642).
33
-
34
- - (🔥 New) Jun. 2, 2024. 💥 The inference code is released. The checkpoint can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main).
35
-
36
-
37
- ## Setup
38
-
39
- First, download and set up the repo:
40
-
41
- ```bash
42
- git clone https://github.com/maxin-cn/Cinemo
43
- cd Cinemo
44
- ```
45
-
46
- We provide an [`environment.yml`](environment.yml) file that can be used to create a Conda environment. If you only want
47
- to run pre-trained models locally on CPU, you can remove the `cudatoolkit` and `pytorch-cuda` requirements from the file.
48
-
49
- ```bash
50
- conda env create -f environment.yml
51
- conda activate cinemo
52
- ```
53
-
54
-
55
- ## Animation
56
-
57
- You can sample from our **pre-trained Cinemo models** with [`animation.py`](pipelines/animation.py). Weights for our pre-trained Cinemo model can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main). The script has various arguments for adjusting sampling steps, changing the classifier-free guidance scale, etc:
58
-
59
- ```bash
60
- bash pipelines/animation.sh
61
- ```
62
-
63
- All related checkpoints will download automatically and then you will get the following results,
64
-
65
- <table style="width:100%; text-align:center;">
66
- <tr>
67
- <td align="center">Input image</td>
68
- <td align="center">Output video</td>
69
- <td align="center">Input image</td>
70
- <td align="center">Output video</td>
71
- </tr>
72
- <tr>
73
- <td align="center"><img src="visuals/animations/people_walking/0.jpg" width="100%"></td>
74
- <td align="center"><img src="visuals/animations/people_walking/people_walking.gif" width="100%"></td>
75
- <td align="center"><img src="visuals/animations/sea_swell/0.jpg" width="100%"></td>
76
- <td align="center"><img src="visuals/animations/sea_swell/sea_swell.gif" width="100%"></td>
77
- </tr>
78
- <tr>
79
- <td align="center" colspan="2">"People Walking"</td>
80
- <td align="center" colspan="2">"Sea Swell"</td>
81
- </tr>
82
- <tr>
83
- <td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/0.jpg" width="100%"></td>
84
- <td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/girl_dancing_under_the_stars.gif" width="100%"></td>
85
- <td align="center"><img src="visuals/animations/dragon_glowing_eyes/0.jpg" width="100%"></td>
86
- <td align="center"><img src="visuals/animations/dragon_glowing_eyes/dragon_glowing_eyes.gif" width="100%"></td>
87
- </tr>
88
- <tr>
89
- <td align="center" colspan="2">"Girl Dancing under the Stars"</td>
90
- <td align="center" colspan="2">"Dragon Glowing Eyes"</td>
91
- </tr>
92
-
93
- </table>
94
-
95
-
96
- ## Other Applications
97
-
98
- You can also utilize Cinemo for other applications, such as motion transfer and video editing:
99
-
100
- ```bash
101
- bash pipelines/video_editing.sh
102
- ```
103
-
104
- All related checkpoints will download automatically and you will get the following results,
105
-
106
- <table style="width:100%; text-align:center;">
107
- <tr>
108
- <td align="center">Input video</td>
109
- <td align="center">First frame</td>
110
- <td align="center">Edited first frame</td>
111
- <td align="center">Output video</td>
112
- </tr>
113
- <tr>
114
- <td align="center"><img src="visuals/video_editing/origin/a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td>
115
- <td align="center"><img src="visuals/video_editing/origin/0.jpg" width="100%"></td>
116
- <td align="center"><img src="visuals/video_editing/edit/0.jpg" width="100%"></td>
117
- <td align="center"><img src="visuals/video_editing/edit/editing_a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td>
118
- </tr>
119
-
120
- </table>
121
-
122
-
123
-
124
- ## Citation
125
- If you find this work useful for your research, please consider citing it.
126
- ```bibtex
127
- @article{ma2024cinemo,
128
- title={Cinemo: Latent Diffusion Transformer for Video Generation},
129
- author={Ma, Xin and Wang, Yaohui and Jia, Gengyun and Chen, Xinyuan and Li, Yuan-Fang and Chen, Cunjian and Qiao, Yu},
130
- journal={arXiv preprint arXiv:2407.15642},
131
- year={2024}
132
- }
133
- ```
134
-
135
-
136
- ## Acknowledgments
137
- Cinemo has been greatly inspired by the following amazing works and teams: [LaVie](https://github.com/Vchitect/LaVie) and [SEINE](https://github.com/Vchitect/SEINE), we thank all the contributors for open-sourcing.
138
-
139
-
140
- ## License
141
- The code and model weights are licensed under [LICENSE](LICENSE).
 
12
  colorFrom: green
13
  colorTo: indigo
14
  ---