Spaces:
aiqtech
/
Running on Zero

flxgif / app.py
multimodalart's picture
oops
361c20d verified
raw
history blame
3.83 kB
import random
import gradio as gr
import numpy as np
import torch
import spaces
from diffusers import FluxPipeline
from PIL import Image
from diffusers.utils import export_to_gif
HEIGHT = 256
WIDTH = 1024
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
).to(device)
def split_image(input_image, num_splits=4):
# Create a list to store the output images
output_images = []
# Split the image into four 256x256 sections
for i in range(num_splits):
left = i * 256
right = (i + 1) * 256
box = (left, 0, right, 256)
output_images.append(input_image.crop(box))
return output_images
@spaces.GPU(duration=190)
def predict(prompt, seed=42, randomize_seed=False, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
prompt_template = f"""
A side by side 4 frame image showing consecutive stills from a looped gif moving from left to right.
The gif is of {prompt}.
"""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image = pipe(
prompt=prompt_template,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
generator=torch.Generator("cpu").manual_seed(seed),
height=HEIGHT,
width=WIDTH
).images[0]
return export_to_gif(split_image(image, 4), "flux.gif", fps=4), output_stills, seed
demo = gr.Interface(fn=predict, inputs="text", outputs="image")
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
#stills{max-height:160px}
"""
examples = [
"a cat waving its paws in the air",
"a panda moving their hips from side to side",
"a flower going through the process of blooming"
]
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# FLUX Gif Generator")
gr.Markdown("Create GIFs with Flux-dev. Based on @fofr's [tweet](https://x.com/fofrAI/status/1828910395962343561).")
gr.Markdown("For better results include a description of the motion in your prompt")
with gr.Row():
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt")
submit = gr.Button("Submit", scale=0)
output = gr.Image(label="GIF", show_label=False)
output_stills = gr.Image(label="stills", show_label=False, elem_id="stills")
gr.Examples(
examples=examples,
fn=predict,
inputs=[prompt],
outputs=[output, output_stills, seed],
cache_examples="lazy"
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.on(
triggers=[submit.click, prompt.submit],
fn=predict,
inputs=[prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
outputs = [output, output_stills, seed]
)
demo.launch()