Spaces:
Running
Running
Commit
·
b795615
1
Parent(s):
997c4e5
added support for datasets with a toggle
Browse files
app.py
CHANGED
@@ -4,19 +4,18 @@ import pandas as pd
|
|
4 |
import numpy as np
|
5 |
import requests
|
6 |
from datetime import datetime
|
7 |
-
from typing import Dict, List, Optional
|
8 |
|
9 |
|
10 |
class HFDownloadsCalculator:
|
11 |
-
|
12 |
BASE_URL = "https://huggingface.co/api"
|
13 |
|
14 |
def __init__(self, token: Optional[str] = None):
|
15 |
self.headers = {"Authorization": f"Bearer {token}"} if token else {}
|
16 |
|
17 |
-
def
|
18 |
response = requests.get(
|
19 |
-
f"{self.BASE_URL}/
|
20 |
params={
|
21 |
"author": username,
|
22 |
"limit": 1000,
|
@@ -27,36 +26,37 @@ class HFDownloadsCalculator:
|
|
27 |
response.raise_for_status()
|
28 |
return response.json()
|
29 |
|
30 |
-
def calculate_total_downloads(self, username: str) -> Dict:
|
31 |
-
|
32 |
|
33 |
total_all_time = 0
|
34 |
total_monthly = 0
|
35 |
-
|
36 |
|
37 |
-
for
|
38 |
-
|
39 |
-
all_time =
|
40 |
-
monthly =
|
41 |
|
42 |
total_all_time += all_time
|
43 |
total_monthly += monthly
|
44 |
|
45 |
if all_time > 0:
|
46 |
-
|
47 |
-
"name":
|
48 |
"downloads_all_time": all_time,
|
49 |
"downloads_monthly": monthly
|
50 |
})
|
51 |
|
52 |
-
|
53 |
|
54 |
return {
|
55 |
"total_downloads_all_time": total_all_time,
|
56 |
"total_downloads_monthly": total_monthly,
|
57 |
-
"
|
58 |
-
"
|
59 |
-
"
|
|
|
60 |
}
|
61 |
|
62 |
|
@@ -64,8 +64,8 @@ class HFDashboard:
|
|
64 |
def __init__(self):
|
65 |
self.calculator = HFDownloadsCalculator()
|
66 |
|
67 |
-
def
|
68 |
-
response = requests.get(f"https://huggingface.co/api/
|
69 |
data = response.json()
|
70 |
|
71 |
avg_daily = data.get('downloads', 0) / 30
|
@@ -78,12 +78,13 @@ class HFDashboard:
|
|
78 |
'downloads': daily_downloads
|
79 |
})
|
80 |
|
81 |
-
def create_dashboard(self, username: str):
|
82 |
if not username:
|
83 |
return None, None, None, "Please enter a username"
|
84 |
|
85 |
try:
|
86 |
-
stats = self.calculator.calculate_total_downloads(username)
|
|
|
87 |
|
88 |
# Metrics HTML
|
89 |
metrics_html = f"""
|
@@ -97,8 +98,8 @@ class HFDashboard:
|
|
97 |
<p style="margin: 5px 0; color: #a8a8b8;">Monthly Downloads</p>
|
98 |
</div>
|
99 |
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #1e1e2e 0%, #2d2d44 100%); border-radius: 10px; flex: 1; margin: 0 10px; border: 1px solid #3d3d5c;">
|
100 |
-
<h2 style="margin: 0; color: #fff;">{stats['
|
101 |
-
<p style="margin: 5px 0; color: #a8a8b8;">Total
|
102 |
</div>
|
103 |
</div>
|
104 |
"""
|
@@ -108,15 +109,15 @@ class HFDashboard:
|
|
108 |
colors = ['#6366f1', '#10b981', '#f59e0b', '#ef4444', '#00b4d8']
|
109 |
colors_rgba = [f'rgba({int(c[1:3],16)}, {int(c[3:5],16)}, {int(c[5:7],16)}, 0.1)' for c in colors]
|
110 |
|
111 |
-
for i,
|
112 |
-
ts_data = self.
|
113 |
color_idx = i % len(colors)
|
114 |
|
115 |
fig_line.add_trace(go.Scatter(
|
116 |
x=ts_data['date'],
|
117 |
y=ts_data['downloads'],
|
118 |
mode='lines',
|
119 |
-
name=
|
120 |
line=dict(color=colors[color_idx], width=3),
|
121 |
hovertemplate='%{y} downloads<br>%{x|%b %d}',
|
122 |
fill='tozeroy',
|
@@ -125,7 +126,7 @@ class HFDashboard:
|
|
125 |
|
126 |
fig_line.update_layout(
|
127 |
height=400,
|
128 |
-
title=dict(text="Top 5
|
129 |
xaxis_title="Date",
|
130 |
yaxis_title="Daily Downloads",
|
131 |
hovermode='x unified',
|
@@ -141,7 +142,7 @@ class HFDashboard:
|
|
141 |
|
142 |
# Bar chart for download distribution
|
143 |
fig_bar = go.Figure()
|
144 |
-
top_10 = stats['
|
145 |
|
146 |
fig_bar.add_trace(go.Bar(
|
147 |
x=[m['name'].split('/')[-1] for m in top_10],
|
@@ -161,8 +162,8 @@ class HFDashboard:
|
|
161 |
|
162 |
fig_bar.update_layout(
|
163 |
height=400,
|
164 |
-
title=dict(text="Top 10
|
165 |
-
xaxis_title=
|
166 |
yaxis_title="Downloads",
|
167 |
barmode='group',
|
168 |
template='plotly_dark',
|
@@ -180,13 +181,13 @@ class HFDashboard:
|
|
180 |
# Create table
|
181 |
df = pd.DataFrame([
|
182 |
[
|
183 |
-
|
184 |
-
f"{
|
185 |
-
f"{
|
186 |
-
f"{(
|
187 |
]
|
188 |
-
for
|
189 |
-
], columns=[
|
190 |
|
191 |
return metrics_html, fig_line, fig_bar, df
|
192 |
|
@@ -207,37 +208,51 @@ def main():
|
|
207 |
)
|
208 |
) as app:
|
209 |
gr.Markdown("# 🤗 HuggingFace Downloads Dashboard")
|
210 |
-
gr.Markdown("Track your model downloads and visualize trends over time")
|
211 |
|
212 |
with gr.Row():
|
213 |
-
with gr.Column():
|
214 |
username_input = gr.Textbox(
|
215 |
label="HuggingFace Username",
|
216 |
placeholder="Enter username (e.g., macadeliccc)",
|
217 |
value="macadeliccc"
|
218 |
)
|
219 |
refresh_btn = gr.Button("Load Dashboard", variant="primary", size="lg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
metrics_display = gr.HTML()
|
222 |
line_plot = gr.Plot()
|
223 |
bar_plot = gr.Plot()
|
224 |
table_output = gr.Dataframe(
|
225 |
-
headers=["
|
226 |
-
label="All
|
227 |
)
|
228 |
|
229 |
-
def update_dashboard(username):
|
230 |
-
return dashboard.create_dashboard(username)
|
231 |
|
232 |
refresh_btn.click(
|
233 |
fn=update_dashboard,
|
234 |
-
inputs=[username_input],
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
outputs=[metrics_display, line_plot, bar_plot, table_output]
|
236 |
)
|
237 |
|
238 |
app.load(
|
239 |
fn=update_dashboard,
|
240 |
-
inputs=[username_input],
|
241 |
outputs=[metrics_display, line_plot, bar_plot, table_output]
|
242 |
)
|
243 |
|
|
|
4 |
import numpy as np
|
5 |
import requests
|
6 |
from datetime import datetime
|
7 |
+
from typing import Dict, List, Optional, Literal
|
8 |
|
9 |
|
10 |
class HFDownloadsCalculator:
|
|
|
11 |
BASE_URL = "https://huggingface.co/api"
|
12 |
|
13 |
def __init__(self, token: Optional[str] = None):
|
14 |
self.headers = {"Authorization": f"Bearer {token}"} if token else {}
|
15 |
|
16 |
+
def get_user_items(self, username: str, item_type: Literal["models", "datasets"]) -> List[Dict]:
|
17 |
response = requests.get(
|
18 |
+
f"{self.BASE_URL}/{item_type}",
|
19 |
params={
|
20 |
"author": username,
|
21 |
"limit": 1000,
|
|
|
26 |
response.raise_for_status()
|
27 |
return response.json()
|
28 |
|
29 |
+
def calculate_total_downloads(self, username: str, item_type: Literal["models", "datasets"]) -> Dict:
|
30 |
+
items = self.get_user_items(username, item_type)
|
31 |
|
32 |
total_all_time = 0
|
33 |
total_monthly = 0
|
34 |
+
item_stats = []
|
35 |
|
36 |
+
for item in items:
|
37 |
+
item_id = item.get(f"{item_type[:-1]}Id") or item.get("id") or item.get("_id", "unknown")
|
38 |
+
all_time = item.get("downloadsAllTime", 0)
|
39 |
+
monthly = item.get("downloads", 0)
|
40 |
|
41 |
total_all_time += all_time
|
42 |
total_monthly += monthly
|
43 |
|
44 |
if all_time > 0:
|
45 |
+
item_stats.append({
|
46 |
+
"name": item_id,
|
47 |
"downloads_all_time": all_time,
|
48 |
"downloads_monthly": monthly
|
49 |
})
|
50 |
|
51 |
+
item_stats.sort(key=lambda x: x["downloads_all_time"], reverse=True)
|
52 |
|
53 |
return {
|
54 |
"total_downloads_all_time": total_all_time,
|
55 |
"total_downloads_monthly": total_monthly,
|
56 |
+
"item_count": len(items),
|
57 |
+
"items_with_downloads": len(item_stats),
|
58 |
+
"top_items": item_stats,
|
59 |
+
"item_type": item_type
|
60 |
}
|
61 |
|
62 |
|
|
|
64 |
def __init__(self):
|
65 |
self.calculator = HFDownloadsCalculator()
|
66 |
|
67 |
+
def get_item_timeseries(self, item_id: str, item_type: str, days: int = 30) -> pd.DataFrame:
|
68 |
+
response = requests.get(f"https://huggingface.co/api/{item_type}/{item_id}")
|
69 |
data = response.json()
|
70 |
|
71 |
avg_daily = data.get('downloads', 0) / 30
|
|
|
78 |
'downloads': daily_downloads
|
79 |
})
|
80 |
|
81 |
+
def create_dashboard(self, username: str, item_type: str):
|
82 |
if not username:
|
83 |
return None, None, None, "Please enter a username"
|
84 |
|
85 |
try:
|
86 |
+
stats = self.calculator.calculate_total_downloads(username, item_type)
|
87 |
+
type_label = item_type.capitalize()
|
88 |
|
89 |
# Metrics HTML
|
90 |
metrics_html = f"""
|
|
|
98 |
<p style="margin: 5px 0; color: #a8a8b8;">Monthly Downloads</p>
|
99 |
</div>
|
100 |
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #1e1e2e 0%, #2d2d44 100%); border-radius: 10px; flex: 1; margin: 0 10px; border: 1px solid #3d3d5c;">
|
101 |
+
<h2 style="margin: 0; color: #fff;">{stats['item_count']}</h2>
|
102 |
+
<p style="margin: 5px 0; color: #a8a8b8;">Total {type_label}</p>
|
103 |
</div>
|
104 |
</div>
|
105 |
"""
|
|
|
109 |
colors = ['#6366f1', '#10b981', '#f59e0b', '#ef4444', '#00b4d8']
|
110 |
colors_rgba = [f'rgba({int(c[1:3],16)}, {int(c[3:5],16)}, {int(c[5:7],16)}, 0.1)' for c in colors]
|
111 |
|
112 |
+
for i, item in enumerate(stats['top_items'][:5]):
|
113 |
+
ts_data = self.get_item_timeseries(item['name'], item_type)
|
114 |
color_idx = i % len(colors)
|
115 |
|
116 |
fig_line.add_trace(go.Scatter(
|
117 |
x=ts_data['date'],
|
118 |
y=ts_data['downloads'],
|
119 |
mode='lines',
|
120 |
+
name=item['name'].split('/')[-1],
|
121 |
line=dict(color=colors[color_idx], width=3),
|
122 |
hovertemplate='%{y} downloads<br>%{x|%b %d}',
|
123 |
fill='tozeroy',
|
|
|
126 |
|
127 |
fig_line.update_layout(
|
128 |
height=400,
|
129 |
+
title=dict(text=f"Top 5 {type_label} - Daily Download Trends", font=dict(size=18), x=0.5, xanchor='center'),
|
130 |
xaxis_title="Date",
|
131 |
yaxis_title="Daily Downloads",
|
132 |
hovermode='x unified',
|
|
|
142 |
|
143 |
# Bar chart for download distribution
|
144 |
fig_bar = go.Figure()
|
145 |
+
top_10 = stats['top_items'][:10]
|
146 |
|
147 |
fig_bar.add_trace(go.Bar(
|
148 |
x=[m['name'].split('/')[-1] for m in top_10],
|
|
|
162 |
|
163 |
fig_bar.update_layout(
|
164 |
height=400,
|
165 |
+
title=dict(text=f"Top 10 {type_label} - Download Distribution", font=dict(size=18), x=0.5, xanchor='center'),
|
166 |
+
xaxis_title=type_label[:-1],
|
167 |
yaxis_title="Downloads",
|
168 |
barmode='group',
|
169 |
template='plotly_dark',
|
|
|
181 |
# Create table
|
182 |
df = pd.DataFrame([
|
183 |
[
|
184 |
+
item['name'],
|
185 |
+
f"{item['downloads_all_time']:,}",
|
186 |
+
f"{item['downloads_monthly']:,}",
|
187 |
+
f"{(item['downloads_monthly'] / item['downloads_all_time'] * 100):.1f}%" if item['downloads_all_time'] > 0 else "0%"
|
188 |
]
|
189 |
+
for item in stats['top_items']
|
190 |
+
], columns=[type_label[:-1], "All-Time Downloads", "Monthly Downloads", "Monthly %"])
|
191 |
|
192 |
return metrics_html, fig_line, fig_bar, df
|
193 |
|
|
|
208 |
)
|
209 |
) as app:
|
210 |
gr.Markdown("# 🤗 HuggingFace Downloads Dashboard")
|
211 |
+
gr.Markdown("Track your model and dataset downloads and visualize trends over time")
|
212 |
|
213 |
with gr.Row():
|
214 |
+
with gr.Column(scale=3):
|
215 |
username_input = gr.Textbox(
|
216 |
label="HuggingFace Username",
|
217 |
placeholder="Enter username (e.g., macadeliccc)",
|
218 |
value="macadeliccc"
|
219 |
)
|
220 |
refresh_btn = gr.Button("Load Dashboard", variant="primary", size="lg")
|
221 |
+
|
222 |
+
with gr.Column(scale=1):
|
223 |
+
type_selector = gr.Radio(
|
224 |
+
["models", "datasets"],
|
225 |
+
value="models",
|
226 |
+
label="Select Type",
|
227 |
+
info="Choose between models or datasets"
|
228 |
+
)
|
229 |
|
230 |
metrics_display = gr.HTML()
|
231 |
line_plot = gr.Plot()
|
232 |
bar_plot = gr.Plot()
|
233 |
table_output = gr.Dataframe(
|
234 |
+
headers=["Item", "All-Time Downloads", "Monthly Downloads", "Monthly %"],
|
235 |
+
label="All Items with Downloads"
|
236 |
)
|
237 |
|
238 |
+
def update_dashboard(username, item_type):
|
239 |
+
return dashboard.create_dashboard(username, item_type)
|
240 |
|
241 |
refresh_btn.click(
|
242 |
fn=update_dashboard,
|
243 |
+
inputs=[username_input, type_selector],
|
244 |
+
outputs=[metrics_display, line_plot, bar_plot, table_output]
|
245 |
+
)
|
246 |
+
|
247 |
+
type_selector.change(
|
248 |
+
fn=update_dashboard,
|
249 |
+
inputs=[username_input, type_selector],
|
250 |
outputs=[metrics_display, line_plot, bar_plot, table_output]
|
251 |
)
|
252 |
|
253 |
app.load(
|
254 |
fn=update_dashboard,
|
255 |
+
inputs=[username_input, type_selector],
|
256 |
outputs=[metrics_display, line_plot, bar_plot, table_output]
|
257 |
)
|
258 |
|