File size: 5,142 Bytes
7890545
 
 
 
 
 
 
00d9bae
7890545
 
 
 
 
 
 
 
00d9bae
 
 
7890545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00d9bae
 
 
 
 
 
 
 
7890545
 
 
00d9bae
 
 
7890545
 
 
 
 
00d9bae
7890545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75849b3
 
 
 
7890545
 
75849b3
7890545
 
 
00d9bae
 
7890545
 
 
 
 
 
00d9bae
7890545
00d9bae
7890545
 
 
 
00d9bae
7890545
5e46a89
7890545
 
 
 
00d9bae
7890545
 
00d9bae
5e46a89
 
 
 
 
 
 
 
 
 
7890545
 
 
 
5e46a89
 
 
 
7890545
 
 
 
5e46a89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7890545
 
5e46a89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from transformers import pipeline

from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline

MODELS = {
    "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}

# λ²ˆμ—­ λͺ¨λΈ λ‘œλ“œ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)

config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")

pipe = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=model,
    variant="fp16",
).to("cuda")

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

def translate_if_korean(text):
    # μž…λ ₯된 ν…μŠ€νŠΈκ°€ ν•œκΈ€μ„ ν¬ν•¨ν•˜κ³  μžˆλŠ”μ§€ 확인
    if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in text):
        # ν•œκΈ€μ΄ ν¬ν•¨λ˜μ–΄ μžˆλ‹€λ©΄ λ²ˆμ—­
        translated = translator(text)[0]['translation_text']
        print(f"Translated prompt: {translated}")  # 디버깅을 μœ„ν•œ 좜λ ₯
        return translated
    return text

@spaces.GPU
def fill_image(prompt, image, model_selection):
    # ν”„λ‘¬ν”„νŠΈ λ²ˆμ—­
    translated_prompt = translate_if_korean(prompt)
    
    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = pipe.encode_prompt(translated_prompt, "cuda", True)

    source = image["background"]
    mask = image["layers"][0]

    alpha_channel = mask.split()[3]
    binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
    cnet_image = source.copy()
    cnet_image.paste(0, (0, 0), binary_mask)

    for image in pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=cnet_image,
    ):
        yield image, cnet_image

    image = image.convert("RGBA")
    cnet_image.paste(image, (0, 0), binary_mask)

    yield source, cnet_image

def clear_result():
    return gr.update(value=None)

css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="ν”„λ‘¬ν”„νŠΈ",
                info="λ§ˆμŠ€ν¬μ— μ±„μ›Œλ„£μ„ λ‚΄μš©μ„ μ„€λͺ…ν•˜μ„Έμš” (ν•œκΈ€ λ˜λŠ” μ˜μ–΄)",
                lines=3,
            )
        with gr.Column():
            model_selection = gr.Dropdown(
                choices=list(MODELS.keys()),
                value="RealVisXL V5.0 Lightning",
                label="λͺ¨λΈ",
            )
            run_button = gr.Button("생성")

    with gr.Row():
        input_image = gr.ImageMask(
            type="pil",
            label="μž…λ ₯ 이미지",
            crop_size=(1024, 1024),
            layers=False
        )

        result = ImageSlider(
            interactive=False,
            label="μƒμ„±λœ 이미지",
        )

    use_as_input_button = gr.Button("μž…λ ₯ μ΄λ―Έμ§€λ‘œ μ‚¬μš©", visible=False)  

    def use_output_as_input(output_image):
        return gr.update(value=output_image[1])

    use_as_input_button.click(
        fn=use_output_as_input,
        inputs=[result],
        outputs=[input_image]
    )

    run_button.click(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=lambda: gr.update(visible=False),
        inputs=None,
        outputs=use_as_input_button,
    ).then(
        fn=fill_image,
        inputs=[prompt, input_image, model_selection],
        outputs=result,
    ).then(
        fn=lambda: gr.update(visible=True),
        inputs=None,
        outputs=use_as_input_button,
    )

    prompt.submit(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=lambda: gr.update(visible=False),
        inputs=None,
        outputs=use_as_input_button,
    ).then(
        fn=fill_image,
        inputs=[prompt, input_image, model_selection],
        outputs=result,
    ).then(
        fn=lambda: gr.update(visible=True),
        inputs=None,
        outputs=use_as_input_button,
    )

demo.launch(share=False)