Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,142 Bytes
7890545 00d9bae 7890545 00d9bae 7890545 00d9bae 7890545 00d9bae 7890545 00d9bae 7890545 75849b3 7890545 75849b3 7890545 00d9bae 7890545 00d9bae 7890545 00d9bae 7890545 00d9bae 7890545 5e46a89 7890545 00d9bae 7890545 00d9bae 5e46a89 7890545 5e46a89 7890545 5e46a89 7890545 5e46a89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from transformers import pipeline
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
MODELS = {
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}
# λ²μ λͺ¨λΈ λ‘λ
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
).to("cuda")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
def translate_if_korean(text):
# μ
λ ₯λ ν
μ€νΈκ° νκΈμ ν¬ν¨νκ³ μλμ§ νμΈ
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in text):
# νκΈμ΄ ν¬ν¨λμ΄ μλ€λ©΄ λ²μ
translated = translator(text)[0]['translation_text']
print(f"Translated prompt: {translated}") # λλ²κΉ
μ μν μΆλ ₯
return translated
return text
@spaces.GPU
def fill_image(prompt, image, model_selection):
# ν둬ννΈ λ²μ
translated_prompt = translate_if_korean(prompt)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(translated_prompt, "cuda", True)
source = image["background"]
mask = image["layers"][0]
alpha_channel = mask.split()[3]
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
cnet_image = source.copy()
cnet_image.paste(0, (0, 0), binary_mask)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
):
yield image, cnet_image
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), binary_mask)
yield source, cnet_image
def clear_result():
return gr.update(value=None)
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="ν둬ννΈ",
info="λ§μ€ν¬μ μ±μλ£μ λ΄μ©μ μ€λͺ
νμΈμ (νκΈ λλ μμ΄)",
lines=3,
)
with gr.Column():
model_selection = gr.Dropdown(
choices=list(MODELS.keys()),
value="RealVisXL V5.0 Lightning",
label="λͺ¨λΈ",
)
run_button = gr.Button("μμ±")
with gr.Row():
input_image = gr.ImageMask(
type="pil",
label="μ
λ ₯ μ΄λ―Έμ§",
crop_size=(1024, 1024),
layers=False
)
result = ImageSlider(
interactive=False,
label="μμ±λ μ΄λ―Έμ§",
)
use_as_input_button = gr.Button("μ
λ ₯ μ΄λ―Έμ§λ‘ μ¬μ©", visible=False)
def use_output_as_input(output_image):
return gr.update(value=output_image[1])
use_as_input_button.click(
fn=use_output_as_input,
inputs=[result],
outputs=[input_image]
)
run_button.click(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
).then(
fn=fill_image,
inputs=[prompt, input_image, model_selection],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
prompt.submit(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
).then(
fn=fill_image,
inputs=[prompt, input_image, model_selection],
outputs=result,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
demo.launch(share=False) |