josh-sematic's picture
Add app
c736f27
import os
import time
from itertools import islice
import shutil
from threading import Thread
import lancedb
import gradio as gr
import polars as pl
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
STYLE = """
.gradio-container td span {
overflow: auto !important;
}
""".strip()
#
EMBEDDING_MODEL = SentenceTransformer("TaylorAI/bge-micro")
MAX_N_ROWS = 3_000_000
N_ROWS_BATCH = 5_000
N_SEARCH_RESULTS = 15
CRAWL_DUMP = "CC-MAIN-2020-05"
DB = None
DISPLAY_COLUMNS = [
"text",
"url",
"token_count",
"count",
]
DISPLAY_COLUMN_TYPES = [
"str",
"str",
"number",
"number",
]
DISPLAY_COLUMN_WIDTHS = [
"300px",
"100px",
"50px",
"25px",
]
def rename_embedding_column(row):
vector = row["embedding"]
row["vector"] = vector
del row["embedding"]
return row
def read_header_markdown() -> str:
with open("./README.md", "r") as fp:
text = fp.read(-1)
# Get only the markdown following the HF metadata section.
text = text.split("\n---\n")[-1]
return text.replace("{{CRAWL_DUMP}}", CRAWL_DUMP)
def db():
global DB
if DB is None:
DB = lancedb.connect("data")
return DB
def load_data_sample():
time.sleep(5)
# remove any data that was already there; we want to replace it.
if os.path.exists("data"):
shutil.rmtree("data")
rows = load_dataset(
"airtrain-ai/fineweb-edu-fortified",
name=CRAWL_DUMP,
split="train",
streaming=True,
)
print("Loading data")
# at this point you could iterate over the rows.
# Here, we'll take a sample of rows with size
# MAX_N_ROWS. Using islice will load only the amount
# we asked for and no extras.
sample = islice(rows, MAX_N_ROWS)
table = None
n_rows_loaded = 0
while True:
batch = list(islice(sample, N_ROWS_BATCH))
if len(batch) == 0:
break
# We'll put it in a vector DB for easy vector search.
# rename "embedding" column to "vector"
data = [rename_embedding_column(row) for row in batch]
n_rows_loaded += len(data)
if table is None:
print("Creating table")
table = db().create_table("data", data=data)
# index the embedding column for fast search.
print("Indexing table")
table.create_index(num_sub_vectors=1)
else:
table.add(data)
print(f"Loaded {n_rows_loaded} rows")
print("Done loading data")
def search(search_phrase: str) -> tuple[pl.DataFrame, int]:
while "data" not in db().table_names():
# Data is loaded asynchronously. Make sure there is at least
# some in the table before searching.
time.sleep(1)
# Create our search vector
embedding = EMBEDDING_MODEL.encode([search_phrase])[0]
# Search
table = db().open_table("data")
data_frame = table.search(embedding).limit(N_SEARCH_RESULTS).to_polars()
return (
# Return only what we want to display
data_frame.select(*[pl.col(c) for c in DISPLAY_COLUMNS]).to_pandas(),
table.count_rows(),
)
with gr.Blocks(css=STYLE) as demo:
gr.HTML(f"<style>{STYLE}</style>")
with gr.Row():
gr.Markdown(read_header_markdown())
with gr.Row():
input_text = gr.Textbox(label="Search phrase", scale=100)
search_button = gr.Button("Search", scale=1, min_width=100)
with gr.Row():
rows_searched = gr.Number(
label="Rows searched",
show_label=True,
)
with gr.Row():
search_results = gr.DataFrame(
headers=DISPLAY_COLUMNS,
type="pandas",
datatype=DISPLAY_COLUMN_TYPES,
row_count=N_SEARCH_RESULTS,
col_count=(len(DISPLAY_COLUMNS), "fixed"),
column_widths=DISPLAY_COLUMN_WIDTHS,
elem_classes=".df-text-col",
)
search_button.click(
search,
[input_text],
[search_results, rows_searched],
)
# load data on another thread so we can start searching even before it's
# all loaded.
data_load_thread = Thread(target=load_data_sample, daemon=True)
data_load_thread.start()
print("Launching app")
demo.launch()