Spaces:
Sleeping
Sleeping
File size: 9,542 Bytes
f6aec2d ca78baa f6aec2d ca78baa f6aec2d ca78baa f6aec2d 88d820d f453842 88d820d 53b44b3 88d820d 53b44b3 f6aec2d 57f2e80 f6aec2d 8f8b860 f6aec2d 75d3b30 f6aec2d ca78baa f6aec2d 07850ea ca78baa 07850ea f6aec2d e602593 ca78baa e602593 ca78baa 57f2e80 e602593 ca78baa 2ebc3cc 57f2e80 ca78baa 57f2e80 53b44b3 ca78baa 57f2e80 ca78baa f6aec2d ca78baa 57f2e80 53b44b3 ca78baa e602593 ca78baa f6aec2d 53b44b3 f6aec2d a46b4c4 f453842 a46b4c4 e30a182 57f2e80 a46b4c4 2ebc3cc e602593 2ebc3cc e602593 2ebc3cc e602593 a46b4c4 57f2e80 a46b4c4 57f2e80 a46b4c4 57f2e80 a46b4c4 57f2e80 a46b4c4 57f2e80 a46b4c4 57f2e80 53b44b3 a46b4c4 57f2e80 f6aec2d e602593 f6aec2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import json
import logging
import os
import urllib.parse
from typing import Any
import gradio as gr
import requests
from gradio_huggingfacehub_search import HuggingfaceHubSearch
logger = logging.getLogger(__name__)
example = HuggingfaceHubSearch().example_value()
HEADER_CONTENT = (
"# 🤗 Dataset DuckDB Query Chatbot\n\n"
"This is a basic text to SQL tool that allows you to query datasets on Hugging Face Hub. "
"It's a fork of "
"[davidberenstein1957/text-to-sql-hub-datasets](https://huggingface.co/spaces/davidberenstein1957/text-to-sql-hub-datasets) "
"that adds chat capability and table name generation."
)
ABOUT_CONTENT = """
This space uses [LLama 3.1 70B](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
via [together.ai](https://together.ai)
Also, it uses the
[dataset-server API](https://redocly.github.io/redoc/?url=https://datasets-server.huggingface.co/openapi.json#operation/isValidDataset).
Query history is saved and given to the chat model so you can chat to refine your query as you go.
When the DuckDB modal is presented, you may need to click on the name of the
config/split at the base of the modal to get the table loaded for DuckDB's use.
Search for and select a dataset to begin.
"""
SYSTEM_PROMPT_TEMPLATE = (
"You are a SQL query expert assistant that returns a DuckDB SQL queries "
"based on the user's natural language query and dataset features. "
"You might need to use DuckDB functions for lists and aggregations, "
"given the features. Only return the SQL query, no other text. The "
"user may ask you to make various adjustments to the query. Every "
"time your response should only include the refined SQL query and "
"nothing else.\n\n"
"The table being queried is named: {table_name}.\n\n"
"# Features\n"
"{features}"
)
def get_iframe(hub_repo_id, sql_query=None):
if not hub_repo_id:
raise ValueError("Hub repo id is required")
if sql_query:
sql_query = urllib.parse.quote(sql_query)
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer?sql_console=true&sql={sql_query}"
else:
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
iframe = f"""
<iframe
src="{url}"
frameborder="0"
width="100%"
height="800px"
></iframe>
"""
return iframe
def get_table_info(hub_repo_id):
url: str = f"https://datasets-server.huggingface.co/info?dataset={hub_repo_id}"
response = requests.get(url)
try:
data = response.json()
data = data.get("dataset_info")
return json.dumps(data)
except Exception as e:
gr.Error(f"Error getting column info: {e}")
def get_table_name(
config: str | None,
split: str | None,
config_choices: list[str],
split_choices: list[str],
):
if len(config_choices) > 0 and config is None:
config = config_choices[0]
if len(split_choices) > 0 and split is None:
split = split_choices[0]
if len(config_choices) > 1 and len(split_choices) > 1:
base_name = f"{config}_{split}"
elif len(config_choices) >= 1 and len(split_choices) <= 1:
base_name = config
else:
base_name = split
def replace_char(c):
if c.isalnum():
return c
if c in ["-", "_", "/"]:
return "_"
return ""
table_name = "".join(replace_char(c) for c in base_name)
if table_name[0].isdigit():
table_name = f"_{table_name}"
return table_name.lower()
def get_system_prompt(
card_data: dict[str, Any],
config: str | None,
split: str | None,
):
config_choices = get_config_choices(card_data)
split_choices = get_split_choices(card_data)
table_name = get_table_name(config, split, config_choices, split_choices)
features = card_data[config]["features"]
return SYSTEM_PROMPT_TEMPLATE.format(
table_name=table_name,
features=features,
)
def get_config_choices(card_data: dict[str, Any]) -> list[str]:
return list(card_data.keys())
def get_split_choices(card_data: dict[str, Any]) -> list[str]:
splits = set()
for config in card_data.values():
splits.update(config.get("splits", {}).keys())
return list(splits)
def query_dataset(hub_repo_id, card_data, query, config, split, history):
if card_data is None or len(card_data) == 0:
if hub_repo_id:
iframe = get_iframe(hub_repo_id)
else:
iframe = "<p>No dataset selected.</p>"
return "", iframe, [], ""
card_data = json.loads(card_data)
system_prompt = get_system_prompt(card_data, config, split)
messages = [{"role": "system", "content": system_prompt}]
for turn in history:
user, assistant = turn
messages.append(
{
"role": "user",
"content": user,
}
)
messages.append(
{
"role": "assistant",
"content": assistant,
}
)
messages.append(
{
"role": "user",
"content": query,
}
)
api_key = os.environ["API_KEY_TOGETHER_AI"].strip()
response = requests.post(
"https://api.together.xyz/v1/chat/completions",
json=dict(
model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
messages=messages,
max_tokens=1000,
),
headers={"Authorization": f"Bearer {api_key}"},
)
if response.status_code != 200:
logger.warning(response.text)
try:
response.raise_for_status()
except Exception as e:
gr.Error(f"Could not query LLM for suggestion: {e}")
response_dict = response.json()
duck_query = response_dict["choices"][0]["message"]["content"]
duck_query = _sanitize_duck_query(duck_query)
history.append((query, duck_query))
return duck_query, get_iframe(hub_repo_id, duck_query), history, ""
def _sanitize_duck_query(duck_query: str) -> str:
# Sometimes the LLM wraps the query like this:
# ```sql
# select * from x;
# ```
# This removes that wrapping if present.
if "```" not in duck_query:
return duck_query
start_idx = duck_query.index("```") + len("```")
end_idx = duck_query.rindex("```")
duck_query = duck_query[start_idx:end_idx]
if duck_query.startswith("sql\n"):
duck_query = duck_query.replace("sql\n", "", 1)
return duck_query
with gr.Blocks() as demo:
gr.Markdown(HEADER_CONTENT)
with gr.Accordion("About/Help", open=False):
gr.Markdown(ABOUT_CONTENT)
with gr.Row():
search_in = HuggingfaceHubSearch(
label="Search Hugging Face Hub",
placeholder="Search for models on Huggingface",
search_type="dataset",
sumbit_on_select=True,
)
with gr.Row():
show_btn = gr.Button("Show Dataset")
with gr.Row():
sql_out = gr.Code(
label="DuckDB SQL Query",
interactive=True,
language="sql",
lines=1,
visible=False,
)
with gr.Row():
card_data = gr.Code(label="Card data", language="json", visible=False)
@gr.render(inputs=[card_data])
def show_config_split_choices(data):
try:
data = json.loads(data.strip())
config_choices = get_config_choices(data)
split_choices = get_split_choices(data)
except Exception:
config_choices = []
split_choices = []
initial_config = config_choices[0] if len(config_choices) > 0 else None
initial_split = split_choices[0] if len(split_choices) > 0 else None
with gr.Row():
with gr.Column():
config_selection = gr.Dropdown(
label="Config Name", choices=config_choices, value=initial_config
)
with gr.Column():
split_selection = gr.Dropdown(
label="Split Name", choices=split_choices, value=initial_split
)
with gr.Accordion("Query Suggestion History.", open=False) as accordion:
chatbot = gr.Chatbot(height=200, layout="bubble")
with gr.Row():
query = gr.Textbox(
label="Query Description",
placeholder="Enter a natural language query to generate SQL",
)
with gr.Row():
with gr.Column():
query_btn = gr.Button("Get Suggested Query")
with gr.Column():
clear = gr.ClearButton([query, chatbot], value="Reset Query History")
with gr.Row():
search_out = gr.HTML(label="Search Results")
gr.on(
[show_btn.click, search_in.submit],
fn=get_iframe,
inputs=[search_in],
outputs=[search_out],
).then(
fn=get_table_info,
inputs=[search_in],
outputs=[card_data],
)
gr.on(
[query_btn.click, query.submit],
fn=query_dataset,
inputs=[
search_in,
card_data,
query,
config_selection,
split_selection,
chatbot,
],
outputs=[sql_out, search_out, chatbot, query],
)
gr.on([query_btn.click], fn=lambda: gr.update(open=True), outputs=[accordion])
if __name__ == "__main__":
demo.launch()
|