Aiswarya Sankar commited on
Commit
9fcff82
·
1 Parent(s): f3b7606

Update openai key

Browse files
Files changed (1) hide show
  1. app.py +17 -18
app.py CHANGED
@@ -18,7 +18,7 @@ import random
18
  import time
19
  import together
20
 
21
- os.environ['OPENAI_API_KEY']='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'
22
  os.environ['ACTIVELOOP_TOKEN']='eyJhbGciOiJIUzUxMiIsImlhdCI6MTY4MTU5NTgyOCwiZXhwIjoxNzEzMjE4MTU5fQ.eyJpZCI6ImFpc3dhcnlhcyJ9.eoiMFZsS20zzMXXupFbowUlLdgIgf_MA1ck_DByzREeoQvNm8GPhKEfqea2y1Qak-ud2jo9dhSTBTfRe1ztezw'
23
 
24
 
@@ -119,10 +119,11 @@ def index_repo(textbox: str, dropdown: str) -> Response:
119
  print("Repo name after setting the value: " + str(repoName))
120
  pathName = git_clone(repo)
121
  root_dir = './' + pathName
 
122
 
123
  print("Repo name after setting the value: " + str(repoName))
124
  activeloop_username = "aiswaryas"
125
- dataset_path = f"hub://{activeloop_username}/" + pathName + "1000"
126
  print(dataset_path)
127
 
128
  try:
@@ -153,7 +154,7 @@ def index_repo(textbox: str, dropdown: str) -> Response:
153
  pass
154
 
155
  activeloop_username = "aiswaryas"
156
- dataset_path = f"hub://{activeloop_username}/" + pathName + "1000"
157
  text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
158
  texts = text_splitter.split_documents(docs)
159
 
@@ -194,10 +195,8 @@ def index_repo(textbox: str, dropdown: str) -> Response:
194
  )
195
 
196
  global ticket_choices, ticket_titles, tickets
197
- print("REPO name in bug triage: " + str(repoName))
198
  repo = "/".join(repoName[:-4].split("/")[-2:])
199
  tickets = fetchGithubIssues(repo, 10)
200
- # print("tickets: " + str(tickets))
201
 
202
  # Create the dropdown
203
  ticket_choices = {ticket["title"]: ticket for ticket in tickets}
@@ -218,9 +217,9 @@ def answer_questions(question: str, github: str, **kwargs) -> Response:
218
  github = repoName[:-4]
219
  print(github)
220
  try:
221
- embeddings = OpenAIEmbeddings(openai_api_key="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")
222
  pathName = github.split('/')[-1]
223
- dataset_path = "hub://aiswaryas/" + pathName + "1000"
224
 
225
  db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)
226
 
@@ -241,7 +240,7 @@ def answer_questions(question: str, github: str, **kwargs) -> Response:
241
  callback_manager=CallbackManager(
242
  [StreamingGradioCallbackHandler(q)]
243
  ),
244
- openai_api_key="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",
245
  )
246
  qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
247
  chat_history = []
@@ -306,7 +305,7 @@ def generateFolderNamesForRepo(repo):
306
  input data and generate the responses that are displayed in the UI.
307
  """
308
  pathName = git_clone(repo)
309
- root_dir = './' + pathName + "1000"
310
 
311
  files, dirs, docs = [], [], []
312
  for dirpath, dirnames, filenames in os.walk(root_dir):
@@ -342,10 +341,10 @@ def generateDocumentationPerFolder(dir, github):
342
 
343
  print(prompt)
344
  try:
345
- embeddings = OpenAIEmbeddings(openai_api_key="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")
346
  pathName = github.split('/')[-1]
347
  print("PATH NAME: " + str(pathName))
348
- dataset_path = "hub://aiswaryas/" + pathName + "1000"
349
 
350
  db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)
351
 
@@ -362,7 +361,7 @@ def generateDocumentationPerFolder(dir, github):
362
  temperature=0.0,
363
  verbose=True,
364
  streaming=True, # Pass `streaming=True` to make sure the client receives the data.
365
- openai_api_key="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",
366
  )
367
  qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
368
  chat_history = []
@@ -405,9 +404,9 @@ def solveGithubIssue(ticket, history) -> Response:
405
  print(question)
406
 
407
  try:
408
- embeddings = OpenAIEmbeddings(openai_api_key="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")
409
  pathName = github.split('/')[-1]
410
- dataset_path = "hub://aiswaryas/" + pathName + "1000"
411
 
412
  db = DeepLake(dataset_path=dataset_path, read_only=True, embedding=embeddings)
413
 
@@ -427,7 +426,7 @@ def solveGithubIssue(ticket, history) -> Response:
427
  callback_manager=CallbackManager(
428
  [StreamingGradioCallbackHandler(q)]
429
  ),
430
- openai_api_key="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",
431
  )
432
  qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever,max_tokens_limit=8000)
433
 
@@ -455,9 +454,9 @@ def bot(history, **kwargs):
455
  print("Repo name in the bot: " + str(repoName))
456
  github = repoName[:-4]
457
  try:
458
- embeddings = OpenAIEmbeddings(openai_api_key="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")
459
  pathName = github.split('/')[-1]
460
- dataset_path = "hub://aiswaryas/" + pathName + "1000"
461
 
462
  db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)
463
 
@@ -477,7 +476,7 @@ def bot(history, **kwargs):
477
  callback_manager=CallbackManager(
478
  [StreamingGradioCallbackHandler(q)]
479
  ),
480
- openai_api_key="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",
481
  )
482
  qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
483
  chat_history = []
 
18
  import time
19
  import together
20
 
21
+ os.environ['OPENAI_API_KEY']='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'
22
  os.environ['ACTIVELOOP_TOKEN']='eyJhbGciOiJIUzUxMiIsImlhdCI6MTY4MTU5NTgyOCwiZXhwIjoxNzEzMjE4MTU5fQ.eyJpZCI6ImFpc3dhcnlhcyJ9.eoiMFZsS20zzMXXupFbowUlLdgIgf_MA1ck_DByzREeoQvNm8GPhKEfqea2y1Qak-ud2jo9dhSTBTfRe1ztezw'
23
 
24
 
 
119
  print("Repo name after setting the value: " + str(repoName))
120
  pathName = git_clone(repo)
121
  root_dir = './' + pathName
122
+ print(root_dir)
123
 
124
  print("Repo name after setting the value: " + str(repoName))
125
  activeloop_username = "aiswaryas"
126
+ dataset_path = f"hub://{activeloop_username}/" + pathName + "3"
127
  print(dataset_path)
128
 
129
  try:
 
154
  pass
155
 
156
  activeloop_username = "aiswaryas"
157
+ dataset_path = f"hub://{activeloop_username}/" + pathName + "3"
158
  text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
159
  texts = text_splitter.split_documents(docs)
160
 
 
195
  )
196
 
197
  global ticket_choices, ticket_titles, tickets
 
198
  repo = "/".join(repoName[:-4].split("/")[-2:])
199
  tickets = fetchGithubIssues(repo, 10)
 
200
 
201
  # Create the dropdown
202
  ticket_choices = {ticket["title"]: ticket for ticket in tickets}
 
217
  github = repoName[:-4]
218
  print(github)
219
  try:
220
+ embeddings = OpenAIEmbeddings(openai_api_key="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")
221
  pathName = github.split('/')[-1]
222
+ dataset_path = "hub://aiswaryas/" + pathName + "3"
223
 
224
  db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)
225
 
 
240
  callback_manager=CallbackManager(
241
  [StreamingGradioCallbackHandler(q)]
242
  ),
243
+ openai_api_key="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",
244
  )
245
  qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
246
  chat_history = []
 
305
  input data and generate the responses that are displayed in the UI.
306
  """
307
  pathName = git_clone(repo)
308
+ root_dir = './' + pathName + "3"
309
 
310
  files, dirs, docs = [], [], []
311
  for dirpath, dirnames, filenames in os.walk(root_dir):
 
341
 
342
  print(prompt)
343
  try:
344
+ embeddings = OpenAIEmbeddings(openai_api_key="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")
345
  pathName = github.split('/')[-1]
346
  print("PATH NAME: " + str(pathName))
347
+ dataset_path = "hub://aiswaryas/" + pathName + "3"
348
 
349
  db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)
350
 
 
361
  temperature=0.0,
362
  verbose=True,
363
  streaming=True, # Pass `streaming=True` to make sure the client receives the data.
364
+ openai_api_key="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",
365
  )
366
  qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
367
  chat_history = []
 
404
  print(question)
405
 
406
  try:
407
+ embeddings = OpenAIEmbeddings(openai_api_key="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")
408
  pathName = github.split('/')[-1]
409
+ dataset_path = "hub://aiswaryas/" + pathName + "3"
410
 
411
  db = DeepLake(dataset_path=dataset_path, read_only=True, embedding=embeddings)
412
 
 
426
  callback_manager=CallbackManager(
427
  [StreamingGradioCallbackHandler(q)]
428
  ),
429
+ openai_api_key="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",
430
  )
431
  qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever,max_tokens_limit=8000)
432
 
 
454
  print("Repo name in the bot: " + str(repoName))
455
  github = repoName[:-4]
456
  try:
457
+ embeddings = OpenAIEmbeddings(openai_api_key="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")
458
  pathName = github.split('/')[-1]
459
+ dataset_path = "hub://aiswaryas/" + pathName + "3"
460
 
461
  db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)
462
 
 
476
  callback_manager=CallbackManager(
477
  [StreamingGradioCallbackHandler(q)]
478
  ),
479
+ openai_api_key="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",
480
  )
481
  qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
482
  chat_history = []