Aiswarya Sankar commited on
Commit
ef0925c
·
1 Parent(s): 533a986
Files changed (2) hide show
  1. entelligence.py +619 -0
  2. requirements.txt +0 -0
entelligence.py ADDED
@@ -0,0 +1,619 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+
4
+ import os
5
+ from queue import SimpleQueue
6
+
7
+ from langchain.callbacks.manager import CallbackManager
8
+ from langchain.chat_models import ChatOpenAI
9
+ from pydantic import BaseModel
10
+ import requests
11
+ import typing
12
+ from typing import TypeVar, Generic
13
+ import math
14
+ import tqdm
15
+ from langchain.chains import ConversationalRetrievalChain
16
+ import os
17
+ from langchain.embeddings.openai import OpenAIEmbeddings
18
+ from langchain.vectorstores import DeepLake
19
+ import random
20
+
21
+ os.environ['OPENAI_API_KEY']='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'
22
+ os.environ['ACTIVELOOP_TOKEN']='eyJhbGciOiJIUzUxMiIsImlhdCI6MTY4MTU5NTgyOCwiZXhwIjoxNzEzMjE4MTU5fQ.eyJpZCI6ImFpc3dhcnlhcyJ9.eoiMFZsS20zzMXXupFbowUlLdgIgf_MA1ck_DByzREeoQvNm8GPhKEfqea2y1Qak-ud2jo9dhSTBTfRe1ztezw'
23
+
24
+
25
+ import os
26
+ from langchain.document_loaders import TextLoader
27
+ from langchain.text_splitter import CharacterTextSplitter
28
+
29
+ import subprocess
30
+ repo_name = "https://github.com/aiswaryasankar/memeAI.git"
31
+
32
+ from langchain.callbacks.base import BaseCallbackHandler
33
+ from langchain.schema import LLMResult
34
+ from typing import Any, Union
35
+
36
+ global ticket_choices
37
+
38
+ job_done = object() # signals the processing is done
39
+
40
+ class StreamingGradioCallbackHandler(BaseCallbackHandler):
41
+ def __init__(self, q: SimpleQueue):
42
+ self.q = q
43
+
44
+ def on_llm_start(
45
+ self, serialized: typing.Dict[str, Any], prompts: typing.List[str], **kwargs: Any
46
+ ) -> None:
47
+ """Run when LLM starts running. Clean the queue."""
48
+ while not self.q.empty():
49
+ try:
50
+ self.q.get(block=False)
51
+ except Empty:
52
+ continue
53
+
54
+ def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
55
+ """Run on new LLM token. Only available when streaming is enabled."""
56
+ self.q.put(token)
57
+
58
+ def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
59
+ """Run when LLM ends running."""
60
+ self.q.put(job_done)
61
+
62
+ def on_llm_error(
63
+ self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
64
+ ) -> None:
65
+ """Run when LLM errors."""
66
+ self.q.put(job_done)
67
+
68
+
69
+ class Response(BaseModel):
70
+ result: typing.Any
71
+ error: str
72
+ stdout: str
73
+ repo: str
74
+
75
+ class HumanPrompt(BaseModel):
76
+ prompt: str
77
+
78
+ class GithubResponse(BaseModel):
79
+ result: typing.Any
80
+ error: str
81
+ stdout: str
82
+ repo: str
83
+
84
+
85
+ embeddings = OpenAIEmbeddings(disallowed_special=())
86
+
87
+
88
+ def git_clone(repo_url):
89
+ subprocess.run(["git", "clone", repo_url])
90
+ dirpath = repo_url.split('/')[-1]
91
+ if dirpath.lower().endswith('.git'):
92
+ dirpath = dirpath[:-4]
93
+ return dirpath
94
+
95
+
96
+ def index_repo(repo: str) -> Response:
97
+ pathName = git_clone(repo)
98
+ root_dir = './' + pathName
99
+
100
+ docs = []
101
+ for dirpath, dirnames, filenames in os.walk(root_dir):
102
+ for file in filenames:
103
+ try:
104
+ loader = TextLoader(os.path.join(dirpath, file), encoding='utf-8')
105
+ docs.extend(loader.load_and_split())
106
+ except Exception as e:
107
+ print("Exception: " + str(e) + "| File: " + os.path.join(dirpath, file))
108
+ pass
109
+
110
+ activeloop_username = "aiswaryas"
111
+ dataset_path = f"hub://{activeloop_username}/" + pathName
112
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
113
+ texts = text_splitter.split_documents(docs)
114
+
115
+ print(texts)
116
+ for text in texts:
117
+ print(text)
118
+
119
+ try:
120
+ db = DeepLake(dataset_path=dataset_path,
121
+ embedding_function=embeddings,
122
+ token=os.environ['ACTIVELOOP_TOKEN'], read_only=False)
123
+ # NOTE: read_only=False because we want to ingest documents
124
+ # NOTE: This will raise a `deeplake.util.exceptions.LockedException` if dataset is already locked
125
+ # NOTE: change it to read_only=True when querying the dataset
126
+
127
+ # Delete dataset if not empty:
128
+ if len(db.ds) > 0:
129
+ print("Dataset not empty. Deleting existing dataset...")
130
+ db.ds.delete()
131
+ print("Done.")
132
+ # Reinitialize
133
+ db = DeepLake(dataset_path=dataset_path,
134
+ embedding_function=embeddings,
135
+ token=os.environ['ACTIVELOOP_TOKEN'], read_only=False)
136
+
137
+ except Exception as e:
138
+ return Response(
139
+ result= "Failed to index github repo",
140
+ repo="",
141
+ error=str(e),
142
+ stdout="",
143
+ )
144
+
145
+ try:
146
+ db.add_documents(texts)
147
+
148
+ except Exception as e:
149
+ return Response(
150
+ result= "Failed to index github repo",
151
+ repo="",
152
+ error=str(e),
153
+ stdout="",
154
+ )
155
+
156
+ finally:
157
+ db.ds._unlock()
158
+
159
+ return "SUCCESS"
160
+
161
+
162
+ def answer_questions(question: str, github: str, **kwargs) -> Response:
163
+
164
+ global repo_name
165
+ github = repo_name[:-4]
166
+ try:
167
+ embeddings = OpenAIEmbeddings(openai_api_key="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")
168
+ pathName = github.split('/')[-1]
169
+ dataset_path = "hub://aiswaryas/" + pathName
170
+
171
+ db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)
172
+
173
+ print("finished indexing repo")
174
+ retriever = db.as_retriever()
175
+ retriever.search_kwargs['distance_metric'] = 'cos'
176
+ retriever.search_kwargs['fetch_k'] = 100
177
+ retriever.search_kwargs['maximal_marginal_relevance'] = True
178
+ retriever.search_kwargs['k'] = 20
179
+
180
+ q = SimpleQueue()
181
+
182
+ model = ChatOpenAI(
183
+ model_name='gpt-4',
184
+ temperature=0.0,
185
+ verbose=True,
186
+ streaming=True, # Pass `streaming=True` to make sure the client receives the data.
187
+ callback_manager=CallbackManager(
188
+ [StreamingGradioCallbackHandler(q)]
189
+ ),
190
+ openai_api_key="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",
191
+ )
192
+ qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
193
+ chat_history = []
194
+
195
+ except Exception as e:
196
+
197
+ print("Exception: " + str(e))
198
+ return Response(
199
+ result="",
200
+ repo="",
201
+ error=str(e),
202
+ stdout="",
203
+ )
204
+
205
+ return Response(
206
+ result=qa({"question": question, "chat_history": chat_history}),
207
+ repo="",
208
+ error="",
209
+ stdout="",
210
+ )
211
+
212
+ def fetchGithubIssues(repo: str, num_issues:int, **kwargs) -> Response:
213
+ """
214
+ This endpoint should get a list of all the github issues that are open for this repository
215
+ """
216
+
217
+ batch = []
218
+ all_issues = []
219
+ per_page = 100 # Number of issues to return per page
220
+ num_pages = math.ceil(num_issues / per_page)
221
+ base_url = "https://api.github.com/repos"
222
+
223
+ GITHUB_TOKEN = "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" # Copy your GitHub token here
224
+ headers = {"Authorization": f"token {GITHUB_TOKEN}"}
225
+
226
+ issues_data = []
227
+
228
+ for page in range(num_pages):
229
+ # Query with state=all to get both open and closed issues
230
+ query = f"issues?page={page}&per_page={per_page}&state=all"
231
+ issues = requests.get(f"{base_url}/{repo}/{query}", headers=headers)
232
+
233
+ batch.extend(issues.json())
234
+ for issue in issues.json():
235
+ issues_data.append({
236
+ "issue_url": issue["url"],
237
+ "title": issue["title"],
238
+ "body": issue["body"],
239
+ "comments_url": issue["comments_url"],
240
+ })
241
+
242
+ print(issues_data)
243
+ return issues_data
244
+
245
+
246
+ def generateFolderNamesForRepo(repo):
247
+ """
248
+ This endpoint will first take the repo structure and return the folder and subfolder names.
249
+ From those names, it will then prompt the model to generate an architecture diagram of that folder.
250
+ There will be three "modules" no input just output that take the autogenerated prompts based on the
251
+ input data and generate the responses that are displayed in the UI.
252
+ """
253
+ pathName = git_clone(repo)
254
+ root_dir = './' + pathName
255
+
256
+ files, dirs, docs = [], [], []
257
+ for dirpath, dirnames, filenames in os.walk(root_dir):
258
+ for file in filenames:
259
+ try:
260
+ loader = TextLoader(os.path.join(dirpath, file), encoding='utf-8')
261
+ docs.extend(loader.load_and_split())
262
+ files.append(file)
263
+ dirs.append(dirnames)
264
+ except Exception as e:
265
+ print("Exception: " + str(e) + "| File: " + os.path.join(dirpath, file))
266
+ pass
267
+
268
+ return dirs[0]
269
+
270
+ def generateDocumentationPerFolder(dir, github):
271
+
272
+ if dir == "overview":
273
+ prompt= """
274
+ Summarize the structure of the memeAI repository. Make a list of all endpoints and their behavior. Explain
275
+ how this module is used in the scope of the larger project. Format the response as code documentation with an
276
+ Overview, Architecture and Implementation Details. Within implementation details, list out each function and provide
277
+ an overview of that function.
278
+ """.format(dir)
279
+ else:
280
+ prompt= """
281
+ Summarize how {} is implemented in the memeAI repository. Make a list of all functions and their behavior. Explain
282
+ how this module is used in the scope of the larger project. Format the response as code documentation with an
283
+ Overview, Architecture and Implementation Details. Within implementation details, list out each function and provide
284
+ an overview of that function.
285
+ """.format(dir)
286
+
287
+ print(prompt)
288
+ try:
289
+ embeddings = OpenAIEmbeddings(openai_api_key="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")
290
+ pathName = github.split('/')[-1]
291
+ dataset_path = "hub://aiswaryas/" + pathName
292
+
293
+ db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)
294
+
295
+ # print("finished indexing repo")
296
+ retriever = db.as_retriever()
297
+ retriever.search_kwargs['distance_metric'] = 'cos'
298
+ retriever.search_kwargs['fetch_k'] = 100
299
+ retriever.search_kwargs['maximal_marginal_relevance'] = True
300
+ retriever.search_kwargs['k'] = 20
301
+
302
+ # streaming_handler = kwargs.get('streaming_handler')
303
+ model = ChatOpenAI(
304
+ model_name='gpt-4',
305
+ temperature=0.0,
306
+ verbose=True,
307
+ streaming=True, # Pass `streaming=True` to make sure the client receives the data.
308
+ openai_api_key="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",
309
+ )
310
+ qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
311
+ chat_history = []
312
+
313
+ except Exception as e:
314
+ return str(e)
315
+
316
+ # history[-1][1] = ""
317
+ # for char in qa({"question": prompt, "chat_history": chat_history}):
318
+ # history[-1][1] += char
319
+ # time.sleep(0.01)
320
+ # yield history
321
+
322
+ return qa({"question": prompt, "chat_history": chat_history})["answer"]
323
+ return response["answer"]
324
+
325
+
326
+ def generateArchitectureDiagram(folder) -> Response:
327
+ """
328
+ This endpoint should generate a Mermaid diagram for the given input files. It will return the
329
+ """
330
+
331
+
332
+ def solveGithubIssue(ticket, history) -> Response:
333
+ """
334
+ This endpoint takes in a github issue and then queries the db for the question against the codebase.
335
+ """
336
+ print(history)
337
+ global repo_name, ticket_choices
338
+ github = repo_name[:-4]
339
+ repoFolder = github.split("/")[-1]
340
+ body = ticket_choices[ticket]["body"]
341
+ title = ticket_choices[ticket]["title"]
342
+ question = """
343
+ Given the code in the {} repo, propose a solution for this ticket {} that includes a
344
+ high level implementation, narrowing down the root cause of the issue and psuedocode if
345
+ applicable on how to resolve the issue. If multiple changes are required to address the
346
+ problem, list out each of the steps and a brief explanation for each one.
347
+ """.format(repoFolder, body)
348
+
349
+ q_display = """
350
+ How would I approach solving this ticket: {}. Here is a summary of the issue: {}
351
+ """.format(title, body)
352
+
353
+ print(question)
354
+
355
+ try:
356
+ embeddings = OpenAIEmbeddings(openai_api_key="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")
357
+ pathName = github.split('/')[-1]
358
+ dataset_path = "hub://aiswaryas/" + pathName
359
+
360
+ db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)
361
+
362
+ # print("finished indexing repo")
363
+ retriever = db.as_retriever()
364
+ retriever.search_kwargs['distance_metric'] = 'cos'
365
+ retriever.search_kwargs['fetch_k'] = 100
366
+ retriever.search_kwargs['maximal_marginal_relevance'] = True
367
+ retriever.search_kwargs['k'] = 20
368
+
369
+ q = SimpleQueue()
370
+ model = ChatOpenAI(
371
+ model_name='gpt-4',
372
+ temperature=0.0,
373
+ verbose=True,
374
+ streaming=True, # Pass `streaming=True` to make sure the client receives the data.
375
+ callback_manager=CallbackManager(
376
+ [StreamingGradioCallbackHandler(q)]
377
+ ),
378
+ openai_api_key="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",
379
+ )
380
+ qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
381
+
382
+ except Exception as e:
383
+ return [[str(e), None]]
384
+
385
+ history = [[q_display, ""]]
386
+ history[-1][1] = ""
387
+ for char in qa({"question": prompt, "chat_history": chat_history}):
388
+ history[-1][1] += char
389
+ time.sleep(0.01)
390
+ yield history
391
+
392
+ # return [[qa({"question": question, "chat_history": chat_history})["answer"], None]]
393
+
394
+
395
+ def user(message, history):
396
+ return "", history + [[message, None]]
397
+
398
+
399
+ def bot(history, **kwargs):
400
+ print(history)
401
+ user_message = history[-1][0]
402
+ global repo_name
403
+ github = repo_name[:-4]
404
+ try:
405
+ embeddings = OpenAIEmbeddings(openai_api_key="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")
406
+ pathName = github.split('/')[-1]
407
+ dataset_path = "hub://aiswaryas/" + pathName
408
+
409
+ db = DeepLake(dataset_path=dataset_path, read_only=True, embedding_function=embeddings)
410
+
411
+ print("finished indexing repo")
412
+ retriever = db.as_retriever()
413
+ retriever.search_kwargs['distance_metric'] = 'cos'
414
+ retriever.search_kwargs['fetch_k'] = 100
415
+ retriever.search_kwargs['maximal_marginal_relevance'] = True
416
+ retriever.search_kwargs['k'] = 20
417
+
418
+ q = SimpleQueue()
419
+ model = ChatOpenAI(
420
+ model_name='gpt-4',
421
+ temperature=0.0,
422
+ verbose=True,
423
+ streaming=True, # Pass `streaming=True` to make sure the client receives the data.
424
+ callback_manager=CallbackManager(
425
+ [StreamingGradioCallbackHandler(q)]
426
+ ),
427
+ openai_api_key="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",
428
+ )
429
+ qa = ConversationalRetrievalChain.from_llm(model,retriever=retriever)
430
+ chat_history = []
431
+
432
+ except Exception as e:
433
+ print("Exception: " + str(e))
434
+ return str(e)
435
+
436
+ history[-1][1] = ""
437
+ for char in qa({"question": user_message, "chat_history": chat_history})["answer"]:
438
+ history[-1][1] += char
439
+ yield history
440
+
441
+
442
+ with gr.Blocks() as demo:
443
+
444
+ gr.Markdown("""
445
+ # Entelligence AI
446
+
447
+ Enabling your product team to ship product 10x faster.
448
+ """)
449
+
450
+ repoTextBox = gr.Textbox(label="Github Repository")
451
+ repo_name = "https://github.com/aiswaryasankar/memeAI.git"
452
+ # def update_state(value):
453
+ # repo_name.value = value
454
+ # return value
455
+
456
+ # repoTextBox.change(update_state, repoTextBox)
457
+ # print(repo_name.value)
458
+ success_response = gr.Textbox(label="")
459
+ ingest_btn = gr.Button("Index repo")
460
+ ingest_btn.click(fn=index_repo, inputs=repoTextBox, outputs=success_response, api_name="index_repo")
461
+
462
+
463
+ # Toggle visibility of the chat, bugs, docs, model windows
464
+ with gr.Tab("Code Chat"):
465
+ chatbot = gr.Chatbot()
466
+ msg = gr.Textbox()
467
+ clear = gr.Button("Clear")
468
+
469
+ msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
470
+ bot, chatbot, chatbot
471
+ )
472
+ clear.click(lambda: None, None, chatbot, queue=False)
473
+
474
+
475
+ index = 0
476
+ with gr.Tab("Bug Triage"):
477
+
478
+ # Display the titles in the dropdown
479
+ def create_ticket_dropdown(tickets):
480
+
481
+ return gr.Dropdown.update(
482
+ choices=titles, value=titles[0]
483
+ ), gr.update(visible=True)
484
+
485
+ # Here you want to first call the getGithubIssues function
486
+ # repo = gr.Interface.get_session_state("repo")
487
+ print(repo_name)
488
+ repo = "/".join(repo_name[:-4].split("/")[-2:])
489
+ tickets = fetchGithubIssues(repo, 10)
490
+
491
+ # Create the dropdown
492
+ global ticket_choices
493
+ ticket_choices = {ticket["title"]: ticket for ticket in tickets}
494
+ ticket_titles = [ticket["title"] for ticket in tickets]
495
+
496
+ ticketDropdown = gr.Dropdown(choices=ticket_titles, title="Github Issues")
497
+
498
+ # Extract the ticket title, body for the selected ticket
499
+ chatbot = gr.Chatbot()
500
+ msg = gr.Textbox()
501
+ clear = gr.Button("Clear")
502
+
503
+ if index == 0:
504
+ msg.submit(solveGithubIssue, [ticketDropdown, chatbot], [msg, chatbot], queue=False).then(
505
+ bot, chatbot, chatbot
506
+ )
507
+ ticketDropdown.change(solveGithubIssue, inputs=[ticketDropdown, chatbot], outputs=[chatbot])
508
+ index += 1
509
+ else:
510
+ msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
511
+ bot, chatbot, chatbot
512
+ )
513
+ index += 1
514
+ clear.click(lambda: None, None, chatbot, queue=False)
515
+
516
+
517
+ with gr.Tab("AI Code Documentation"):
518
+ # First parse through the folder structure and store that as a list of clickable buttons
519
+ gr.Markdown("""
520
+ ## AI Generated Code Documentation
521
+
522
+ Code documentation comes in 3 flavors - internal engineering, external API documentation and product documentation. Each offers different layers of abstraction over the code base.
523
+ """)
524
+
525
+ # docs = generateDocumentationPerFolder("overview", repo_name)
526
+ # markdown = gr.Markdown(value=docs)
527
+
528
+ def button_click_callback(label):
529
+ docs = generateDocumentationPerFolder(label, repo_name[:-4])
530
+ markdown.update(docs)
531
+
532
+ # Generate the left column buttons and their names and wrap each one in a function
533
+ with gr.Row():
534
+ with gr.Column(scale=.5, min_width=300):
535
+ dirNames = generateFolderNamesForRepo(repo_name[:-4])
536
+ print(dirNames)
537
+ buttons = [gr.Button(folder_name, onclick=button_click_callback) for folder_name in dirNames]
538
+
539
+ # Generate the overall documentation for the main bubble at the same time
540
+ with gr.Column(scale=2, min_width=300):
541
+ docs = generateDocumentationPerFolder("overview", repo_name[:-4])
542
+ markdown = gr.Markdown(value=docs)
543
+ # markdown.update(docs)
544
+
545
+
546
+ # For each folder, generate a diagram and 2-3 prompts that dive deeper into explaining content
547
+
548
+
549
+ # Render all the content in the UI
550
+
551
+ #
552
+
553
+ with gr.Tab("Custom Model Finetuning"):
554
+ # First provide a summary of offering
555
+ gr.Markdown("""
556
+ ## Enterprise Custom Model Finetuning
557
+
558
+ Finetuning code generation models directly on your enterprise code base has shown up to 10% increase in model suggestion acceptance rate.
559
+ """)
560
+
561
+ # Choose base model - radio with model size
562
+ gr.Radio(choices=["Santacoder (1.1B parameter model)", "Incoder (6B parameter model)", "Codegen (16B parameter model)", "Starcoder (15.5B parameter model)"] , value="Starcoder (15.5B parameter model)")
563
+
564
+ # Choose existing code base or input a new code base for finetuning -
565
+ with gr.Row():
566
+ gr.Markdown("""
567
+ If you'd like to use the current code base, click this toggle otherwise input the entire code base below.
568
+ """)
569
+ existing_repo = gr.Checkbox(value=True, label="Use existing repository")
570
+ gr.Textbox(label="Input repository", visible=False)
571
+
572
+ # Allow option to remove generated files etc
573
+ gr.Markdown("""
574
+ Finetuned model performance is highly dependent on training data quality. We have currently found that excluding the following file types improves performance. If you'd like to include them, please toggle them.
575
+ """)
576
+ file_types = gr.CheckboxGroup(choices=['.bin', '.gen', '.git', '.gz','.jpg', '.lz', '.midi', '.mpq','.png', '.tz'], label="Removed file types")
577
+
578
+ # Based on data above, we should show a field for estimated fine tuning cost
579
+ # Then we should show the chart for loss
580
+ def wandb_report(url):
581
+ iframe = f'<iframe src={url} style="border:none;height:1024px;width:100%">'
582
+ return gr.HTML(iframe)
583
+
584
+ submit_btn = gr.Button("Start Training")
585
+ with gr.Column(visible=False) as start_training:
586
+ # Include the epoch loss table
587
+ epoch_loss = gr.Dataframe(
588
+ headers=["Step", "Training Loss", "Validation Loss"],
589
+ datatype=["number", "number", "number"],
590
+ row_count=5,
591
+ col_count=(3, "fixed"),
592
+ value=[[500, 1.868200, 1.548535], [1000, 1.450100, 1.518277], [1500, 1.659000, 1.486497],
593
+ [2000, 1.364900, 1.452842], [2500, 1.406300, 1.405151], [3000, 1.276000, 1.346159]]
594
+ )
595
+
596
+ # After you start training you should see the Wandb report
597
+ report_url = 'https://wandb.ai/aiswaryasankar/aiswarya-santacoder-finetuning/reports/Aiswarya-Santacoder-Finetuning--Vmlldzo0ODM3MDA4'
598
+ report = wandb_report(report_url)
599
+
600
+ # Include a playground to compare different models on given tasks
601
+ # Link to the generated huggingface spaces model if you opt into it
602
+ # Toggle to select model for the remaining functionality
603
+
604
+ def startTraining(): # existing_repo, file_types
605
+ start_training= gr.update(visible=True)
606
+ # return {
607
+ # report: report,
608
+ # epoch_loss: epoch_loss,
609
+ # start_training: gr.update(visible=True),
610
+ # }
611
+
612
+ submit_btn.click(
613
+ startTraining,
614
+ # inputs=[existing_repo, file_types],
615
+ # outputs=[start_training], # report, epoch_loss,
616
+ )
617
+
618
+ demo.launch(debug=True, share=True)
619
+
requirements.txt ADDED
File without changes