flux2api / app.py
smgc's picture
Update app.py
3af6d28 verified
raw
history blame
10.6 kB
from flask import Flask, request, jsonify, Response
import requests
import json
import time
import random
import logging
import sys
import asyncio
app = Flask(__name__)
# 配置日志
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s [%(levelname)s] %(message)s',
handlers=[
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
SYSTEM_ASSISTANT = """作为 Stable Diffusion Prompt 提示词专家,您将从关键词中创建提示,通常来自 Danbooru 等数据库。
提示通常描述图像,使用常见词汇,按重要性排列,并用逗号分隔。避免使用"-"或".",但可以接受空格和自然语言。避免词汇重复。
为了强调关键词,请将其放在括号中以增加其权重。例如,"(flowers)"将'flowers'的权重增加1.1倍,而"(((flowers)))"将其增加1.331倍。使用"(flowers:1.5)"将'flowers'的权重增加1.5倍。只为重要的标签增加权重。
提示包括三个部分:**前缀** (质量标签+风格词+效果器)+ **主题** (图像的主要焦点)+ **场景** (背景、环境)。
* 前缀影响图像质量。像"masterpiece"、"best quality"、"4k"这样的标签可以提高图像的细节。像"illustration"、"lensflare"这样的风格词定义图像的风格。像"bestlighting"、"lensflare"、"depthoffield"这样的效果器会影响光照和深度。
* 主题是图像的主要焦点,如角色或场景。对主题进行详细描述可以确保图像丰富而详细。增加主题的权重以增强其清晰度。对于角色,描述面部、头发、身体、服装、姿势等特征。
* 场景描述环境。没有场景,图像的背景是平淡的,主题显得过大。某些主题本身包含场景(例如建筑物、风景)。像"花草草地"、"阳光"、"河流"这样的环境词可以丰富场景。你的任务是设计图像生成的提示。请按照以下步骤进行操作:
1. 我会发送给您一个图像场景。需要你生成详细的图像描述
2. 图像描述必须是英文,输出为Positive Prompt。
示例:
我发送:二战时期的护士。
您回复只回复:
A WWII-era nurse in a German uniform, holding a wine bottle and stethoscope, sitting at a table in white attire, with a table in the background, masterpiece, best quality, 4k, illustration style, best lighting, depth of field, detailed character, detailed environment.
"""
def get_random_token(auth_header):
if not auth_header:
return None
if auth_header.startswith('Bearer '):
auth_header = auth_header[7:]
tokens = [token.strip() for token in auth_header.split(',') if token.strip()]
if not tokens:
return None
return f"Bearer {random.choice(tokens)}"
def translate_and_enhance_prompt(prompt, auth_token):
translate_url = 'https://api.siliconflow.cn/v1/chat/completions'
translate_body = {
'model': 'Qwen/Qwen2-72B-Instruct',
'messages': [
{'role': 'system', 'content': SYSTEM_ASSISTANT},
{'role': 'user', 'content': prompt}
]
}
headers = {
'Content-Type': 'application/json',
'Authorization': auth_token
}
logger.info(f"Sending request to {translate_url}")
logger.info(f"Request headers: {headers}")
logger.info(f"Request body: {json.dumps(translate_body, ensure_ascii=False)}")
try:
response = requests.post(translate_url, headers=headers, json=translate_body, timeout=30)
logger.info(f"Response status code: {response.status_code}")
logger.info(f"Response content: {response.text}")
response.raise_for_status()
result = response.json()
return result['choices'][0]['message']['content']
except requests.exceptions.RequestException as e:
logger.error(f"Error in translate_and_enhance_prompt: {str(e)}")
raise
@app.route('/')
def index():
return "text-to-image with siliconflow", 200
@app.route('/ai/v1/chat/completions', methods=['POST'])
def handle_request():
try:
body = request.json
model = body.get('model')
messages = body.get('messages')
stream = body.get('stream', False)
if not model or not messages or len(messages) == 0:
return jsonify({"error": "Bad Request: Missing required fields"}), 400
prompt = messages[-1]['content']
random_token = get_random_token(request.headers.get('Authorization'))
if not random_token:
return jsonify({"error": "Unauthorized: Invalid or missing Authorization header"}), 401
try:
enhanced_prompt = translate_and_enhance_prompt(prompt, random_token)
except Exception as e:
logger.error(f"Error in translate_and_enhance_prompt: {str(e)}")
return jsonify({"error": "Failed to enhance prompt"}), 500
new_url = f'https://api.siliconflow.cn/v1/{model}/text-to-image'
new_request_body = {
"prompt": enhanced_prompt,
"image_size": "1024x1024",
"batch_size": 1,
"num_inference_steps": 4,
"guidance_scale": 1
}
headers = {
'accept': 'application/json',
'content-type': 'application/json',
'Authorization': random_token
}
logger.info(f"Sending request to {new_url}")
logger.info(f"Request headers: {headers}")
logger.info(f"Request body: {json.dumps(new_request_body, ensure_ascii=False)}")
try:
response = requests.post(new_url, headers=headers, json=new_request_body, timeout=60)
logger.info(f"Response status code: {response.status_code}")
logger.info(f"Response content: {response.text}")
response.raise_for_status()
response_body = response.json()
if 'images' in response_body and response_body['images'] and 'url' in response_body['images'][0]:
image_url = response_body['images'][0]['url']
logger.info(f"Successfully retrieved image URL: {image_url}")
else:
logger.error(f"Unexpected response structure: {response_body}")
return jsonify({"error": "Unexpected response structure from image generation API"}), 500
except requests.exceptions.RequestException as e:
logger.error(f"Error in image generation request: {str(e)}")
return jsonify({"error": "Failed to generate image"}), 500
except (KeyError, IndexError, ValueError) as e:
logger.error(f"Error parsing image generation response: {str(e)}")
return jsonify({"error": "Failed to parse image generation response"}), 500
unique_id = int(time.time() * 1000)
current_timestamp = unique_id // 1000
system_fingerprint = "fp_" + ''.join(random.choices('abcdefghijklmnopqrstuvwxyz0123456789', k=9))
image_data = {'data': [{'url': image_url}]}
if stream:
return stream_response(request, unique_id, image_data, prompt, enhanced_prompt, "1024x1024", current_timestamp, model, system_fingerprint)
else:
return non_stream_response(unique_id, image_data, prompt, enhanced_prompt, "1024x1024", current_timestamp, model, system_fingerprint)
except Exception as e:
logger.error(f"Unexpected error in handle_request: {str(e)}")
return jsonify({"error": f"Internal Server Error: {str(e)}"}), 500
def stream_response(request, unique_id, image_data, original_prompt, translated_prompt, size, created, model, system_fingerprint):
logger.debug("Starting stream response")
response = Response(stream_with_context(generate_stream(unique_id, image_data, original_prompt, translated_prompt, size, created, model, system_fingerprint)), content_type='text/event-stream')
logger.debug("Stream response completed")
return response
def generate_stream(unique_id, image_data, original_prompt, translated_prompt, size, created, model, system_fingerprint):
chunks = [
f"原始提示词:\n{original_prompt}\n",
f"翻译后的提示词:\n{translated_prompt}\n",
f"图像规格:{size}\n",
"正在根据提示词生成图像...\n",
"图像正在处理中...\n",
"即将完成...\n",
f"生成成功!\n图像生成完毕,以下是结果:\n\n![生成的图像]({image_data['data'][0]['url']})"
]
for i, chunk in enumerate(chunks):
json_chunk = json.dumps({
"id": unique_id,
"object": "chat.completion.chunk",
"created": created,
"model": model,
"system_fingerprint": system_fingerprint,
"choices": [{
"index": 0,
"delta": {"content": chunk},
"logprobs": None,
"finish_reason": None
}]
})
yield f"data: {json_chunk}\n\n"
time.sleep(0.5) # 模拟生成时间
final_chunk = json.dumps({
"id": unique_id,
"object": "chat.completion.chunk",
"created": created,
"model": model,
"system_fingerprint": system_fingerprint,
"choices": [{
"index": 0,
"delta": {},
"logprobs": None,
"finish_reason": "stop"
}]
})
yield f"data: {final_chunk}\n\n"
def non_stream_response(unique_id, image_data, original_prompt, translated_prompt, size, created, model, system_fingerprint):
content = (
f"原始提示词:{original_prompt}\n"
f"翻译后的提示词:{translated_prompt}\n"
f"图像规格:{size}\n"
f"图像生成成功!\n"
f"以下是结果:\n\n"
f"![生成的图像]({image_data['data'][0]['url']})"
)
response = {
'id': unique_id,
'object': "chat.completion",
'created': created,
'model': model,
'system_fingerprint': system_fingerprint,
'choices': [{
'index': 0,
'message': {
'role': "assistant",
'content': content
},
'finish_reason': "stop"
}],
'usage': {
'prompt_tokens': len(original_prompt),
'completion_tokens': len(content),
'total_tokens': len(original_prompt) + len(content)
}
}
return jsonify(response)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8000)