flux2api / app.py
smgc's picture
Update app.py
403a673 verified
raw
history blame
7.66 kB
from flask import Flask, request, jsonify, Response
import requests
import json
import time
import random
import logging
from requests.exceptions import RequestException
app = Flask(__name__)
# 配置日志
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
SYSTEM_ASSISTANT = """作为 Stable Diffusion Prompt 提示词专家,您将从关键词中创建提示,通常来自 Danbooru 等数据库。
提示通常描述图像,使用常见词汇,按重要性排列,并用逗号分隔。避免使用"-"或".",但可以接受空格和自然语言。避免词汇重复。
为了强调关键词,请将其放在括号中以增加其权重。例如,"(flowers)"将'flowers'的权重增加1.1倍,而"(((flowers)))"将其增加1.331倍。使用"(flowers:1.5)"将'flowers'的权重增加1.5倍。只为重要的标签增加权重。
提示包括三个部分:**前缀** (质量标签+风格词+效果器)+ **主题** (图像的主要焦点)+ **场景** (背景、环境)。
* 前缀影响图像质量。像"masterpiece"、"best quality"、"4k"这样的标签可以提高图像的细节。像"illustration"、"lensflare"这样的风格词定义图像的风格。像"bestlighting"、"lensflare"、"depthoffield"这样的效果器会影响光照和深度。
* 主题是图像的主要焦点,如角色或场景。对主题进行详细描述可以确保图像丰富而详细。增加主题的权重以增强其清晰度。对于角色,描述面部、头发、身体、服装、姿势等特征。
* 场景描述环境。没有场景,图像的背景是平淡的,主题显得过大。某些主题本身包含场景(例如建筑物、风景)。像"花草草地"、"阳光"、"河流"这样的环境词可以丰富场景。你的任务是设计图像生成的提示。请按照以下步骤进行操作:
1. 我会发送给您一个图像场景。需要你生成详细的图像描述
2. 图像描述必须是英文,输出为Positive Prompt。
示例:
我发送:二战时期的护士。
您回复只回复:
A WWII-era nurse in a German uniform, holding a wine bottle and stethoscope, sitting at a table in white attire, with a table in the background, masterpiece, best quality, 4k, illustration style, best lighting, depth of field, detailed character, detailed environment.
"""
def get_random_token(auth_header):
if not auth_header:
return None
if auth_header.startswith('Bearer '):
auth_header = auth_header[7:]
tokens = [token.strip() for token in auth_header.split(',') if token.strip()]
if not tokens:
return None
return f"Bearer {random.choice(tokens)}"
def translate_and_enhance_prompt(prompt, auth_token):
translate_url = 'https://api.siliconflow.cn/v1/chat/completions'
translate_body = {
'model': 'Qwen/Qwen2-72B-Instruct',
'messages': [
{'role': 'system', 'content': SYSTEM_ASSISTANT},
{'role': 'user', 'content': prompt}
]
}
headers = {
'Content-Type': 'application/json',
'Authorization': auth_token
}
try:
response = requests.post(translate_url, headers=headers, json=translate_body, timeout=30)
response.raise_for_status()
result = response.json()
return result['choices'][0]['message']['content']
except RequestException as e:
logger.error(f"Error in translate_and_enhance_prompt: {str(e)}")
raise
@app.route('/')
def index():
return "text-to-image with siliconflow", 200
@app.route('/ai/v1/chat/completions', methods=['POST'])
def handle_request():
try:
body = request.json
model = body.get('model')
messages = body.get('messages')
stream = body.get('stream', False)
if not model or not messages or len(messages) == 0:
return jsonify({"error": "Bad Request: Missing required fields"}), 400
prompt = messages[-1]['content']
random_token = get_random_token(request.headers.get('Authorization'))
if not random_token:
return jsonify({"error": "Unauthorized: Invalid or missing Authorization header"}), 401
try:
enhanced_prompt = translate_and_enhance_prompt(prompt, random_token)
except Exception as e:
logger.error(f"Error in translate_and_enhance_prompt: {str(e)}")
return jsonify({"error": "Failed to enhance prompt"}), 500
new_url = f'https://api.siliconflow.cn/v1/{model}/text-to-image'
new_request_body = {
"prompt": enhanced_prompt,
"image_size": "1024x1024",
"batch_size": 1,
"num_inference_steps": 4,
"guidance_scale": 1
}
headers = {
'accept': 'application/json',
'content-type': 'application/json',
'Authorization': random_token
}
try:
response = requests.post(new_url, headers=headers, json=new_request_body, timeout=60)
response.raise_for_status()
response_body = response.json()
image_url = response_body['images'][0]['url']
except RequestException as e:
logger.error(f"Error in image generation request: {str(e)}")
return jsonify({"error": "Failed to generate image"}), 500
unique_id = int(time.time() * 1000)
current_timestamp = unique_id // 1000
if stream:
response_payload = {
"id": unique_id,
"object": "chat.completion.chunk",
"created": current_timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": f"原始提示词:{prompt}\n增强后的提示词:{enhanced_prompt}\n生成的图像:\n![]({image_url})"
},
"finish_reason": "stop"
}
]
}
data_string = json.dumps(response_payload)
return Response(f"data: {data_string}\n\n", content_type='text/event-stream')
else:
response_payload = {
"id": unique_id,
"object": "chat.completion",
"created": current_timestamp,
"model": model,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": f"原始提示词:{prompt}\n增强后的提示词:{enhanced_prompt}\n生成的图像:\n![]({image_url})"
},
"logprobs": None,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": len(prompt),
"completion_tokens": len(enhanced_prompt) + len(image_url),
"total_tokens": len(prompt) + len(enhanced_prompt) + len(image_url)
}
}
data_string = json.dumps(response_payload)
return Response(f"{data_string}\n\n", content_type='text/event-stream')
except Exception as e:
logger.error(f"Unexpected error in handle_request: {str(e)}")
return jsonify({"error": f"Internal Server Error: {str(e)}"}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8000)