Spaces:
No application file
No application file
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
from scipy.fft import fft, fftfreq | |
from sklearn.preprocessing import MinMaxScaler | |
from tensorflow.keras.models import Sequential, load_model | |
import requests | |
# --- Pre-trained Model (Simple LSTM) --- | |
def build_model(): | |
model = Sequential([ | |
tf.keras.layers.LSTM(32, input_shape=(30, 1)), | |
tf.keras.layers.Dense(1) | |
]) | |
model.compile(loss='mse', optimizer='adam') | |
return model | |
# --- Core Functions --- | |
def analyze_data(data_url, prediction_days=30): | |
try: | |
# 1. Fetch data | |
df = pd.read_csv(data_url) | |
dates = df.columns[4:] # COVID data format | |
values = df.drop(columns=['Province/State', 'Country/Region', 'Lat', 'Long']).sum(axis=0)[4:].values.astype(float) | |
# 2. Detect cycles | |
N = len(values) | |
yf = fft(values) | |
xf = fftfreq(N, 1)[:N//2] | |
dominant_freq = xf[np.argmax(np.abs(yf[0:N//2]))] | |
cycle_days = int(1/dominant_freq) | |
# 3. Make predictions (simplified) | |
scaler = MinMaxScaler() | |
scaled = scaler.fit_transform(values.reshape(-1, 1)) | |
model = build_model() | |
model.fit(scaled[:-10], scaled[10:], epochs=5, verbose=0) # Quick training | |
preds = model.predict(scaled[-30:].reshape(1, 30, 1)) | |
preds = scaler.inverse_transform(preds).flatten().tolist() | |
# 4. Generate insights | |
insights = [ | |
f"Dominant cycle: {cycle_days} days", | |
f"Next {prediction_days}-day trend: {'β Upward' if preds[-1] > preds[0] else 'β Downward'}", | |
"Action: Monitor closely around cycle peaks" | |
] | |
# Simple plot | |
plot = pd.DataFrame({ | |
'Historical': values, | |
'Predicted': [None]*(len(values)) + preds | |
}).plot(title="Cases Analysis").figure | |
return plot, insights | |
except Exception as e: | |
return None, [f"Error: {str(e)}"] | |
# --- Gradio Interface --- | |
interface = gr.Interface( | |
fn=analyze_data, | |
inputs=[ | |
gr.Textbox(label="Data URL", | |
value="https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/data/time_series_covid19_confirmed_global.csv"), | |
gr.Number(label="Days to Predict", value=30) | |
], | |
outputs=[ | |
gr.Plot(label="Analysis"), | |
gr.JSON(label="Insights") | |
], | |
title="DeepSeek Lite Analyzer", | |
description="Analyze time-series data from public URLs. Works best with COVID-19 format data." | |
) | |
interface.launch() |