aiwithankit commited on
Commit
0b34d84
·
1 Parent(s): 49bd8f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -2
app.py CHANGED
@@ -1,8 +1,65 @@
1
- message = "hi hello world"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  import gradio as gr
4
  def random_response(message, history):
5
- return message + "heya"
 
 
6
 
7
  demo = gr.ChatInterface(random_response)
8
  if __name__ == "__main__":
 
1
+ import logging
2
+ import sys
3
+
4
+ logging.basicConfig(stream=sys.stdout, level=logging.INFO)
5
+ logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
6
+
7
+ from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
8
+ from llama_index.llms import HuggingFaceLLM
9
+
10
+ documents = SimpleDirectoryReader("/content/drive/MyDrive/data").load_data()
11
+
12
+ from llama_index.prompts.prompts import SimpleInputPrompt
13
+
14
+
15
+ system_prompt = "You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided."
16
+
17
+
18
+
19
+ # This will wrap the default prompts that are internal to llama-index
20
+ query_wrapper_prompt = SimpleInputPrompt("<|USER|>{query_str}<|ASSISTANT|>")
21
+
22
+ import torch
23
+
24
+ llm = HuggingFaceLLM(
25
+ context_window=4096,
26
+ max_new_tokens=256,
27
+ generate_kwargs={"temperature": 0.0, "do_sample": False},
28
+ system_prompt=system_prompt,
29
+ query_wrapper_prompt=query_wrapper_prompt,
30
+ tokenizer_name="NousResearch/Llama-2-7b-hf",
31
+ model_name="NousResearch/Llama-2-7b-hf",
32
+ device_map="auto",
33
+ # uncomment this if using CUDA to reduce memory usage
34
+ model_kwargs={"torch_dtype": torch.float16 , "load_in_8bit":True}
35
+ )
36
+
37
+ from langchain.embeddings.huggingface import HuggingFaceEmbeddings
38
+ from llama_index import LangchainEmbedding, ServiceContext
39
+
40
+ embed_model = LangchainEmbedding(
41
+ HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
42
+ )
43
+
44
+ service_context = ServiceContext.from_defaults(
45
+ chunk_size=1024,
46
+ llm=llm,
47
+ embed_model=embed_model
48
+ )
49
+
50
+ index = VectorStoreIndex.from_documents(documents, service_context=service_context)
51
+
52
+ #query_engine = index.as_query_engine()
53
+ #response = query_engine.query("what is the name of this document?")
54
+
55
+ #print(response)
56
+
57
 
58
  import gradio as gr
59
  def random_response(message, history):
60
+ query_engine = index.as_query_engine()
61
+ response = query_engine.query(message)
62
+ return response
63
 
64
  demo = gr.ChatInterface(random_response)
65
  if __name__ == "__main__":