File size: 29,474 Bytes
932e7b4 19d34ca 932e7b4 c6683ee 16601a0 1af0cb5 ae1c2a2 c1d03da c6683ee ac9c2b2 c1d03da 73783f9 febce11 5967d4d 932e7b4 c1d03da 932e7b4 73783f9 932e7b4 5967d4d 489bc21 73783f9 c1d03da 73783f9 0f427f3 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 932e7b4 ac9c2b2 0f427f3 ac9c2b2 932e7b4 ac9c2b2 febce11 ac9c2b2 932e7b4 82e63cc 932e7b4 d20c076 19d34ca 1af0cb5 19d34ca 932e7b4 1af0cb5 19d34ca d7aaf8c 19d34ca 1af0cb5 19d34ca 1af0cb5 19d34ca 1af0cb5 19d34ca 91479f7 19d34ca 91479f7 19d34ca 1af0cb5 19d34ca 1af0cb5 19d34ca 932e7b4 1af0cb5 e8835e7 1af0cb5 88d2155 febce11 88d2155 19d34ca febce11 19d34ca 1af0cb5 febce11 0f427f3 febce11 0f427f3 febce11 932e7b4 e2101d4 932e7b4 88d2155 932e7b4 88d2155 932e7b4 4274392 932e7b4 ac9c2b2 88d2155 ac9c2b2 932e7b4 aa96f77 82e63cc 932e7b4 82e63cc 932e7b4 2f1900e 392abb7 932e7b4 2f1900e 392abb7 932e7b4 c9d5b11 1af0cb5 c9d5b11 932e7b4 febce11 932e7b4 ae1c2a2 c9d5b11 9fe5b90 2f1900e 392abb7 c9d5b11 9fe5b90 ae1c2a2 0457419 c9d5b11 0457419 c9d5b11 9fe5b90 2f1900e 392abb7 c9d5b11 9fe5b90 932e7b4 0af824e 5967d4d 1cbfb0b 5967d4d 6432eef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
import os
import time
from typing import Literal
import spaces
import gradio as gr
import modelscope_studio.components.antd as antd
import modelscope_studio.components.antdx as antdx
import modelscope_studio.components.base as ms
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification
from torchvision import transforms
import torch
from PIL import Image
import numpy as np
import io
import logging
from utils.utils import softmax, augment_image, convert_pil_to_bytes
from utils.gradient import gradient_processing
from utils.minmax import preprocess as minmax_preprocess
from utils.ela import genELA as ELA
from utils.wavelet import wavelet_blocking_noise_estimation
from utils.bitplane import bit_plane_extractor
from utils.hf_logger import log_inference_data
from utils.text_content import QUICK_INTRO, IMPLEMENTATION
from agents.monitoring_agents import EnsembleMonitorAgent, WeightOptimizationAgent, SystemHealthAgent
from agents.smart_agents import ContextualIntelligenceAgent, ForensicAnomalyDetectionAgent
from forensics.registry import register_model, MODEL_REGISTRY, ModelEntry
from agents.weight_management import ModelWeightManager
from dotenv import load_dotenv
import json
from huggingface_hub import CommitScheduler
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
os.environ['HF_HUB_CACHE'] = './models'
LOCAL_LOG_DIR = "./hf_inference_logs"
HF_DATASET_NAME="degentic_rd0"
load_dotenv()
# print(os.getenv("HF_HUB_CACHE"))
# Custom JSON Encoder to handle numpy types
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.float32):
return float(obj)
return json.JSONEncoder.default(self, obj)
# Ensure using GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
header_style = {
"textAlign": 'center',
"color": '#fff',
"height": 64,
"paddingInline": 48,
"lineHeight": '64px',
"backgroundColor": '#4096ff',
}
content_style = {
"textAlign": 'center',
"minHeight": 120,
"lineHeight": '120px',
"color": '#fff',
"backgroundColor": '#0958d9',
}
sider_style = {
"textAlign": 'center',
"lineHeight": '120px',
"color": '#fff',
"backgroundColor": '#1677ff',
}
footer_style = {
"textAlign": 'center',
"color": '#fff',
"backgroundColor": '#4096ff',
}
layout_style = {
"borderRadius": 8,
"overflow": 'hidden',
"width": 'calc(100% - 8px)',
"maxWidth": 'calc(100% - 8px)',
}
# Model paths and class names
MODEL_PATHS = {
"model_1": "haywoodsloan/ai-image-detector-deploy",
"model_2": "Heem2/AI-vs-Real-Image-Detection",
"model_3": "Organika/sdxl-detector",
"model_4": "cmckinle/sdxl-flux-detector_v1.1",
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model",
"model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22",
"model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL",
"model_7": "date3k2/vit-real-fake-classification-v4"
}
CLASS_NAMES = {
"model_1": ['artificial', 'real'],
"model_2": ['AI Image', 'Real Image'],
"model_3": ['AI', 'Real'],
"model_4": ['AI', 'Real'],
"model_5": ['Realism', 'Deepfake'],
"model_5b": ['Real', 'Deepfake'],
"model_6": ['ai_gen', 'human'],
"model_7": ['Fake', 'Real'],
}
def preprocess_resize_256(image):
if image.mode != 'RGB':
image = image.convert('RGB')
return transforms.Resize((256, 256))(image)
def preprocess_resize_224(image):
if image.mode != 'RGB':
image = image.convert('RGB')
return transforms.Resize((224, 224))(image)
def postprocess_pipeline(prediction, class_names):
# Assumes HuggingFace pipeline output
return {pred['label']: pred['score'] for pred in prediction}
def postprocess_logits(outputs, class_names):
# Assumes model output with logits
logits = outputs.logits.cpu().numpy()[0]
probabilities = softmax(logits)
return {class_names[i]: probabilities[i] for i in range(len(class_names))}
# Expand ModelEntry to include metadata
# (Assume ModelEntry is updated in registry.py to accept display_name, contributor, model_path)
# If not, we will update registry.py accordingly after this.
def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path):
entry = ModelEntry(model, preprocess, postprocess, class_names)
entry.display_name = display_name
entry.contributor = contributor
entry.model_path = model_path
MODEL_REGISTRY[model_id] = entry
# Load and register models (example for two models)
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device)
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
register_model_with_metadata(
"model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"],
display_name="SwinV2 Based", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"]
)
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device)
register_model_with_metadata(
"model_2", clf_2, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_2"],
display_name="ViT Based", contributor="Heem2", model_path=MODEL_PATHS["model_2"]
)
# Register remaining models
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)
def preprocess_256(image):
if image.mode != 'RGB':
image = image.convert('RGB')
return transforms.Resize((256, 256))(image)
def postprocess_logits_model3(outputs, class_names):
logits = outputs.logits.cpu().numpy()[0]
probabilities = softmax(logits)
return {class_names[i]: probabilities[i] for i in range(len(class_names))}
def model3_infer(image):
inputs = feature_extractor_3(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model_3(**inputs)
return outputs
register_model_with_metadata(
"model_3", model3_infer, preprocess_256, postprocess_logits_model3, CLASS_NAMES["model_3"],
display_name="SDXL Dataset", contributor="Organika", model_path=MODEL_PATHS["model_3"]
)
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device)
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device)
def model4_infer(image):
inputs = feature_extractor_4(image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model_4(**inputs)
return outputs
def postprocess_logits_model4(outputs, class_names):
logits = outputs.logits.cpu().numpy()[0]
probabilities = softmax(logits)
return {class_names[i]: probabilities[i] for i in range(len(class_names))}
register_model_with_metadata(
"model_4", model4_infer, preprocess_256, postprocess_logits_model4, CLASS_NAMES["model_4"],
display_name="SDXL + FLUX", contributor="cmckinle", model_path=MODEL_PATHS["model_4"]
)
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device)
register_model_with_metadata(
"model_5", clf_5, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5"],
display_name="Vit Based", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5"]
)
clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device)
register_model_with_metadata(
"model_5b", clf_5b, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5b"],
display_name="Vit Based, Newer Dataset", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5b"]
)
image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True)
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device)
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device)
register_model_with_metadata(
"model_6", clf_6, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_6"],
display_name="Swin, Midj + SDXL", contributor="ideepankarsharma2003", model_path=MODEL_PATHS["model_6"]
)
image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True)
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device)
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device)
register_model_with_metadata(
"model_7", clf_7, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_7"],
display_name="ViT", contributor="temp", model_path=MODEL_PATHS["model_7"]
)
# Generic inference function
def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict:
entry = MODEL_REGISTRY[model_id]
img = entry.preprocess(image)
try:
result = entry.model(img)
scores = entry.postprocess(result, entry.class_names)
# Flatten output for Dataframe: include metadata and both class scores
ai_score = float(scores.get(entry.class_names[0], 0.0))
real_score = float(scores.get(entry.class_names[1], 0.0))
label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN")
return {
"Model": entry.display_name,
"Contributor": entry.contributor,
"HF Model Path": entry.model_path,
"AI Score": ai_score,
"Real Score": real_score,
"Label": label
}
except Exception as e:
return {
"Model": entry.display_name,
"Contributor": entry.contributor,
"HF Model Path": entry.model_path,
"AI Score": 0.0, # Ensure it's a float even on error
"Real Score": 0.0, # Ensure it's a float even on error
"Label": f"Error: {str(e)}"
}
# Update predict_image to use all registered models in order
def predict_image(img, confidence_threshold):
model_ids = [
"model_1", "model_2", "model_3", "model_4", "model_5", "model_5b", "model_6", "model_7"
]
results = [infer(img, model_id, confidence_threshold) for model_id in model_ids]
return img, results
def get_consensus_label(results):
labels = [r[4] for r in results if len(r) > 4]
if not labels:
return "No results"
consensus = max(set(labels), key=labels.count)
color = {"AI": "red", "REAL": "green", "UNCERTAIN": "orange"}.get(consensus, "gray")
return f"<b><span style='color:{color}'>{consensus}</span></b>"
# Update predict_image_with_json to return consensus label
def predict_image_with_json(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength):
# Ensure img is a PIL Image (if it's not already)
if not isinstance(img, Image.Image):
try:
# If it's a numpy array, convert it
img = Image.fromarray(img)
except Exception as e:
logger.error(f"Error converting input image to PIL: {e}")
# If conversion fails, it's a critical error for the whole process
raise ValueError("Input image could not be converted to PIL Image.")
# Initialize agents
monitor_agent = EnsembleMonitorAgent()
weight_manager = ModelWeightManager()
optimization_agent = WeightOptimizationAgent(weight_manager)
health_agent = SystemHealthAgent()
# New smart agents
context_agent = ContextualIntelligenceAgent()
anomaly_agent = ForensicAnomalyDetectionAgent()
# Monitor system health
health_agent.monitor_system_health()
if augment_methods:
img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength)
else:
img_pil = img
img_np_og = np.array(img) # Convert PIL Image to NumPy array
# 1. Get initial predictions from all models
model_predictions_raw = {}
confidence_scores = {}
results = [] # To store the results for the DataFrame
for model_id in MODEL_REGISTRY:
model_start = time.time()
result = infer(img_pil, model_id, confidence_threshold)
model_end = time.time()
# Monitor individual model performance
monitor_agent.monitor_prediction(
model_id,
result["Label"],
max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)),
model_end - model_start
)
model_predictions_raw[model_id] = result # Store the full result dictionary
confidence_scores[model_id] = max(result.get("AI Score", 0.0), result.get("Real Score", 0.0))
results.append(result) # Add individual model result to the list
# 2. Infer context tags using ContextualIntelligenceAgent
image_data_for_context = {
"width": img.width,
"height": img.height,
"mode": img.mode,
# Add more features like EXIF data if exif_full_dump is used
}
detected_context_tags = context_agent.infer_context_tags(image_data_for_context, model_predictions_raw)
logger.info(f"Detected context tags: {detected_context_tags}")
# 3. Get adjusted weights, passing context tags
adjusted_weights = weight_manager.adjust_weights(model_predictions_raw, confidence_scores, context_tags=detected_context_tags)
# 4. Optimize weights if needed
# `final_prediction_label` is determined AFTER weighted consensus, so analyze_performance will be called later
# 5. Calculate weighted consensus
weighted_predictions = {
"AI": 0.0,
"REAL": 0.0,
"UNCERTAIN": 0.0
}
for model_id, prediction in model_predictions_raw.items(): # Use raw predictions for weighting
# Ensure the prediction label is valid for weighted_predictions
prediction_label = prediction.get("Label") # Extract the label
if prediction_label in weighted_predictions:
weighted_predictions[prediction_label] += adjusted_weights[model_id]
else:
# Handle cases where prediction might be an error or unexpected label
logger.warning(f"Unexpected prediction label '{prediction_label}' from model '{model_id}'. Skipping its weight in consensus.")
final_prediction_label = "UNCERTAIN"
if weighted_predictions["AI"] > weighted_predictions["REAL"] and weighted_predictions["AI"] > weighted_predictions["UNCERTAIN"]:
final_prediction_label = "AI"
elif weighted_predictions["REAL"] > weighted_predictions["AI"] and weighted_predictions["REAL"] > weighted_predictions["UNCERTAIN"]:
final_prediction_label = "REAL"
# Call analyze_performance after final_prediction_label is known
optimization_agent.analyze_performance(final_prediction_label, None)
# 6. Perform forensic processing
gradient_image = gradient_processing(img_np_og) # Added gradient processing
minmax_image = minmax_preprocess(img_np_og) # Added MinMax processing
# First pass - standard analysis
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
# Second pass - enhanced visibility
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False)
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, minmax_image]
# 7. Generate boilerplate descriptions for forensic outputs for anomaly agent
forensic_output_descriptions = [
f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}",
"ELA analysis (Pass 1): Grayscale error map, quality 75.",
"ELA analysis (Pass 2): Grayscale error map, quality 75, enhanced contrast.",
"ELA analysis (Pass 3): Color error map, quality 75, enhanced contrast.",
"Gradient processing: Highlights edges and transitions.",
"MinMax processing: Deviations in local pixel values."
]
# You could also add descriptions for Wavelet and Bit Plane if they were dynamic outputs
# For instance, if wavelet_blocking_noise_estimation had parameters that changed and you wanted to describe them.
# 8. Analyze forensic outputs for anomalies using ForensicAnomalyDetectionAgent
anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions)
logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}")
# Prepare table rows for Dataframe (exclude model path)
table_rows = [[
r.get("Model", ""),
r.get("Contributor", ""),
r.get("AI Score", 0.0) if r.get("AI Score") is not None else 0.0,
r.get("Real Score", 0.0) if r.get("Real Score") is not None else 0.0,
r.get("Label", "Error")
] for r in results]
logger.info(f"Type of table_rows: {type(table_rows)}")
for i, row in enumerate(table_rows):
logger.info(f"Row {i} types: {[type(item) for item in row]}")
# The get_consensus_label function is now replaced by final_prediction_label from weighted consensus
consensus_html = f"<b><span style='color:{'red' if final_prediction_label == 'AI' else ('green' if final_prediction_label == 'REAL' else 'orange')}'>{final_prediction_label}</span></b>"
# Prepare data for logging to Hugging Face dataset
inference_params = {
"confidence_threshold": confidence_threshold,
"augment_methods": augment_methods,
"rotate_degrees": rotate_degrees,
"noise_level": noise_level,
"sharpen_strength": sharpen_strength,
"detected_context_tags": detected_context_tags
}
ensemble_output_data = {
"final_prediction_label": final_prediction_label,
"weighted_predictions": weighted_predictions,
"adjusted_weights": adjusted_weights
}
# Collect agent monitoring data
agent_monitoring_data_log = {
"ensemble_monitor": {
"alerts": monitor_agent.alerts,
"performance_metrics": monitor_agent.performance_metrics
},
"weight_optimization": {
"prediction_history_length": len(optimization_agent.prediction_history),
# You might add a summary of recent accuracy here if _calculate_accuracy is exposed
},
"system_health": {
"memory_usage": health_agent.health_metrics["memory_usage"],
"gpu_utilization": health_agent.health_metrics["gpu_utilization"]
},
"context_intelligence": {
"detected_context_tags": detected_context_tags
},
"forensic_anomaly_detection": anomaly_detection_results
}
# Log the inference data
log_inference_data(
original_image=img, # Use the original uploaded image
inference_params=inference_params,
model_predictions=results, # This already contains detailed results for each model
ensemble_output=ensemble_output_data,
forensic_images=forensics_images, # This is the list of PIL images generated by forensic tools
agent_monitoring_data=agent_monitoring_data_log,
human_feedback=None # This can be populated later with human review data
)
# Final type safety check for forensic_images before returning
cleaned_forensics_images = []
for f_img in forensics_images:
if isinstance(f_img, Image.Image):
cleaned_forensics_images.append(f_img)
elif isinstance(f_img, np.ndarray):
try:
cleaned_forensics_images.append(Image.fromarray(f_img))
except Exception as e:
logger.warning(f"Could not convert numpy array to PIL Image for gallery: {e}")
# Optionally, append a placeholder or skip
else:
logger.warning(f"Unexpected type in forensic_images: {type(f_img)}. Skipping.")
logger.info(f"Cleaned forensic images types: {[type(img) for img in cleaned_forensics_images]}")
# Ensure numerical values in results are standard Python floats before JSON serialization
for i, res_dict in enumerate(results):
for key in ["AI Score", "Real Score"]:
value = res_dict.get(key)
if isinstance(value, np.float32):
res_dict[key] = float(value)
logger.info(f"Converted {key} for result {i} from numpy.float32 to float.")
# Return raw model results as JSON string for debug_json component
json_results = json.dumps(results, cls=NumpyEncoder)
return img_pil, cleaned_forensics_images, table_rows, json_results, consensus_html
with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ overflow-y: hidden !important;} .ms-gr-ant-welcome-icon{ height:unset !important;} .tabs{margin-top:10px;}") as demo:
with ms.Application() as app:
with antd.ConfigProvider():
antdx.Welcome(
icon="https://cdn-avatars.huggingface.co/v1/production/uploads/639daf827270667011153fbc/WpeSFhuB81DY-1TjNUmV_.png",
title="Welcome to Project OpenSight",
description="The OpenSight aims to be an open-source SOTA generated image detection model. This HF Space is not only an introduction but a educational playground for the public to evaluate and challenge current open source models. **Space will be upgraded shortly; inference on all 6 models should take about 1.2~ seconds.** "
)
with gr.Tab("👀 Rethinking Detection Models: Multi-Model, Multi-Strategy Ensemble Team and Agentic Pipelines"):
gr.Markdown("# Open Source Detection Models Found on the Hub\n\n - **IMPORTANT UPDATE REGARDING YOUR DATA AND PRIVACY: [PLEASE REFER TO THE MCP SERVER HACKATHON SUBMISSION FOR CRUCIAL DETAILS](https://huggingface.co/spaces/Agents-MCP-Hackathon/mcp-deepfake-forensics).** ")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='pil')
with gr.Accordion("Settings (Optional)", open=False, elem_id="settings_accordion"):
augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods")
rotate_slider = gr.Slider(0, 45, value=2, step=1, label="Rotate Degrees", visible=False)
noise_slider = gr.Slider(0, 50, value=4, step=1, label="Noise Level", visible=False)
sharpen_slider = gr.Slider(0, 50, value=11, step=1, label="Sharpen Strength", visible=False)
confidence_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Confidence Threshold")
inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider]
predict_button = gr.Button("Predict")
augment_button = gr.Button("Augment & Predict")
image_output = gr.Image(label="Processed Image", visible=False)
with gr.Column(scale=2):
# Use Gradio-native Dataframe to display results with headers
results_table = gr.Dataframe(
label="Model Predictions",
headers=["Model", "Contributor", "AI Score", "Real Score", "Label"],
datatype=["str", "str", "number", "number", "str"]
)
forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery")
with gr.Accordion("Debug Output (Raw JSON)", open=False):
debug_json = gr.JSON(label="Raw Model Results")
consensus_md = gr.Markdown(label="Consensus", value="")
outputs = [image_output, forensics_gallery, results_table, debug_json, consensus_md]
# Show/hide rotate slider based on selected augmentation method
augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider])
augment_checkboxgroup.change(lambda methods: gr.update(visible="add_noise" in methods), inputs=[augment_checkboxgroup], outputs=[noise_slider])
augment_checkboxgroup.change(lambda methods: gr.update(visible="sharpen" in methods), inputs=[augment_checkboxgroup], outputs=[sharpen_slider])
predict_button.click(
fn=predict_image_with_json,
inputs=inputs,
outputs=outputs,
api_name="/predict"
)
augment_button.click( # Connect Augment button to the function
fn=predict_image_with_json,
inputs=[
image_input,
confidence_slider,
gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], value=["rotate", "add_noise", "sharpen"], visible=False), # Default values
rotate_slider,
noise_slider,
sharpen_slider
],
outputs=outputs,
api_name="/augment"
)
with gr.Tab("🙈 Project Introduction"):
gr.Markdown(QUICK_INTRO)
with gr.Tab("👑 Community Forensics Preview"):
# temp_space = gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces")
gr.Markdown("Community Forensics Preview coming soon!") # Placeholder for now
with gr.Tab("🥇 Leaderboard"):
gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soon™")
with gr.Tab("Wavelet Blocking Noise Estimation", visible=False):
gr.Interface(
fn=wavelet_blocking_noise_estimation,
inputs=[gr.Image(type="pil"), gr.Slider(1, 32, value=8, step=1, label="Block Size")],
outputs=gr.Image(type="pil"),
title="Wavelet-Based Noise Analysis",
description="Analyzes image noise patterns using wavelet decomposition. This tool helps detect compression artifacts and artificial noise patterns that may indicate image manipulation. Higher noise levels in specific regions can reveal areas of potential tampering.",
api_name="/tool_waveletnoise"
)
with gr.Tab("Bit Plane Values", visible=False):
"""Forensics Tool: Bit Plane Extractor
Args:
image: PIL Image to analyze
channel: Color channel to extract bit plane from ("Luminance", "Red", "Green", "Blue", "RGB Norm")
bit_plane: Bit plane index to extract (0-7)
filter_type: Filter to apply ("Disabled", "Median", "Gaussian")
"""
gr.Interface(
fn=bit_plane_extractor,
inputs=[
gr.Image(type="pil"),
gr.Dropdown(["Luminance", "Red", "Green", "Blue", "RGB Norm"], label="Channel", value="Luminance"),
gr.Slider(0, 7, value=0, step=1, label="Bit Plane"),
gr.Dropdown(["Disabled", "Median", "Gaussian"], label="Filter", value="Disabled")
],
outputs=gr.Image(type="pil"),
title="Bit Plane Analysis",
description="Extracts and visualizes individual bit planes from different color channels. This forensic tool helps identify hidden patterns and artifacts in image data that may indicate manipulation. Different bit planes can reveal inconsistencies in image processing or editing.",
api_name="/tool_bitplane"
)
# with gr.Tab("EXIF Full Dump"):
# gr.Interface(
# fn=exif_full_dump,
# inputs=gr.Image(type="pil"),
# outputs=gr.JSON(),
# description="Extract all EXIF metadata from the uploaded image."
# )
# --- MCP-Ready Launch ---
if __name__ == "__main__":
# Initialize CommitScheduler
# The scheduler will monitor LOCAL_LOG_DIR and push changes to HF_DATASET_NAME
with CommitScheduler(
repo_id=HF_DATASET_NAME, # Your Hugging Face dataset repository ID
repo_type="dataset",
folder_path=LOCAL_LOG_DIR,
every=5, # Commit every 5 minutes
private=False, # Keep your dataset private
token=os.getenv("HF_TOKEN") # Uncomment and set if token is not saved globally
) as scheduler:
demo.launch(mcp_server=True) |