|
import spaces |
|
import gradio as gr |
|
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification |
|
from torchvision import transforms |
|
import torch |
|
from PIL import Image |
|
import numpy as np |
|
from utils.goat import call_inference |
|
import io |
|
import warnings |
|
|
|
|
|
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset") |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True) |
|
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") |
|
model_1 = model_1.to(device) |
|
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) |
|
|
|
|
|
model_2_path = "Heem2/AI-vs-Real-Image-Detection" |
|
clf_2 = pipeline("image-classification", model=model_2_path, device=device) |
|
|
|
|
|
models = ["Organika/sdxl-detector", "cmckinle/sdxl-flux-detector"] |
|
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(models[0], device=device) |
|
model_3 = AutoModelForImageClassification.from_pretrained(models[0]).to(device) |
|
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1], device=device) |
|
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device) |
|
|
|
|
|
class_names_1 = ['artificial', 'real'] |
|
class_names_2 = ['AI Image', 'Real Image'] |
|
labels_3 = ['AI', 'Real'] |
|
labels_4 = ['AI', 'Real'] |
|
|
|
def softmax(vector): |
|
e = np.exp(vector - np.max(vector)) |
|
return e / e.sum() |
|
|
|
def convert_pil_to_bytes(image, format='JPEG'): |
|
img_byte_arr = io.BytesIO() |
|
image.save(img_byte_arr, format=format) |
|
img_byte_arr = img_byte_arr.getvalue() |
|
return img_byte_arr |
|
|
|
@spaces.GPU(duration=10) |
|
def predict_image(img, confidence_threshold): |
|
|
|
if not isinstance(img, Image.Image): |
|
raise ValueError(f"Expected a PIL Image, but got {type(img)}") |
|
|
|
|
|
if img.mode != 'RGB': |
|
img_pil = img.convert('RGB') |
|
else: |
|
img_pil = img |
|
|
|
|
|
img_pil = transforms.Resize((256, 256))(img_pil) |
|
|
|
|
|
try: |
|
prediction_1 = clf_1(img_pil) |
|
result_1 = {pred['label']: pred['score'] for pred in prediction_1} |
|
print(result_1) |
|
|
|
for class_name in class_names_1: |
|
if class_name not in result_1: |
|
result_1[class_name] = 0.0 |
|
|
|
if result_1['artificial'] >= confidence_threshold: |
|
label_1 = f"AI, Confidence: {result_1['artificial']:.4f}" |
|
elif result_1['real'] >= confidence_threshold: |
|
label_1 = f"Real, Confidence: {result_1['real']:.4f}" |
|
else: |
|
label_1 = "Uncertain Classification" |
|
except Exception as e: |
|
label_1 = f"Error: {str(e)}" |
|
|
|
|
|
try: |
|
prediction_2 = clf_2(img_pil) |
|
result_2 = {pred['label']: pred['score'] for pred in prediction_2} |
|
print(result_2) |
|
|
|
for class_name in class_names_2: |
|
if class_name not in result_2: |
|
result_2[class_name] = 0.0 |
|
|
|
if result_2['AI Image'] >= confidence_threshold: |
|
label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}" |
|
elif result_2['Real Image'] >= confidence_threshold: |
|
label_2 = f"Real, Confidence: {result_2['Real Image']:.4f}" |
|
else: |
|
label_2 = "Uncertain Classification" |
|
except Exception as e: |
|
label_2 = f"Error: {str(e)}" |
|
|
|
|
|
try: |
|
inputs_3 = feature_extractor_3(img_pil, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs_3 = model_3(**inputs_3) |
|
logits_3 = outputs_3.logits |
|
probabilities_3 = softmax(logits_3.cpu().numpy()[0]) |
|
result_3 = { |
|
labels_3[0]: float(probabilities_3[0]), |
|
labels_3[1]: float(probabilities_3[1]) |
|
} |
|
print(result_3) |
|
|
|
for class_name in labels_3: |
|
if class_name not in result_3: |
|
result_3[class_name] = 0.0 |
|
|
|
if result_3['AI'] >= confidence_threshold: |
|
label_3 = f"AI, Confidence: {result_3['AI']:.4f}" |
|
elif result_3['Real'] >= confidence_threshold: |
|
label_3 = f"Real, Confidence: {result_3['Real']:.4f}" |
|
else: |
|
label_3 = "Uncertain Classification" |
|
except Exception as e: |
|
label_3 = f"Error: {str(e)}" |
|
|
|
|
|
try: |
|
inputs_4 = feature_extractor_4(img_pil, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs_4 = model_4(**inputs_4) |
|
logits_4 = outputs_4.logits |
|
probabilities_4 = softmax(logits_4.cpu().numpy()[0]) |
|
result_4 = { |
|
labels_4[0]: float(probabilities_4[0]), |
|
labels_4[1]: float(probabilities_4[1]) |
|
} |
|
print(result_4) |
|
|
|
for class_name in labels_4: |
|
if class_name not in result_4: |
|
result_4[class_name] = 0.0 |
|
|
|
if result_4['AI'] >= confidence_threshold: |
|
label_4 = f"AI, Confidence: {result_4['AI']:.4f}" |
|
elif result_4['Real'] >= confidence_threshold: |
|
label_4 = f"Real, Confidence: {result_4['Real']:.4f}" |
|
else: |
|
label_4 = "Uncertain Classification" |
|
except Exception as e: |
|
label_4 = f"Error: {str(e)}" |
|
|
|
try: |
|
img_bytes = convert_pil_to_bytes(img_pil) |
|
response5_raw = call_inference(img_bytes) |
|
response5 = response5_raw.json() |
|
print(response5) |
|
label_5 = f"Result: {response5}" |
|
except Exception as e: |
|
label_5 = f"Error: {str(e)}" |
|
|
|
|
|
combined_results = { |
|
"SwinV2/detect": label_1, |
|
"ViT/AI-vs-Real": label_2, |
|
"Swin/SDXL": label_3, |
|
"Swin/SDXL-FLUX": label_4, |
|
"GOAT": label_5 |
|
} |
|
return img_pil, combined_results |
|
|
|
|
|
def generate_results_html(results): |
|
html_content = f""" |
|
<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" rel="stylesheet"> |
|
<div class="container"> |
|
<div class="row mt-4"> |
|
<div class="col"> |
|
<h5>SwinV2/detect</h5> |
|
<p>{results.get("SwinV2/detect", "N/A")}</p> |
|
</div> |
|
<div class="col"> |
|
<h5>ViT/AI-vs-Real</h5> |
|
<p>{results.get("ViT/AI-vs-Real", "N/A")}</p> |
|
</div> |
|
<div class="col"> |
|
<h5>Swin/SDXL</h5> |
|
<p>{results.get("Swin/SDXL", "N/A")}</p> |
|
</div> |
|
<div class="col"> |
|
<h5>Swin/SDXL-FLUX</h5> |
|
<p>{results.get("Swin/SDXL-FLUX", "N/A")}</p> |
|
</div> |
|
<div class="col"> |
|
<h5>GOAT</h5> |
|
<p>{results.get("GOAT", "N/A")}</p> |
|
</div> |
|
</div> |
|
</div> |
|
""" |
|
return html_content |
|
|
|
|
|
def predict_image_with_html(img, confidence_threshold): |
|
img_pil, results = predict_image(img, confidence_threshold) |
|
html_content = generate_results_html(results) |
|
return img_pil, html_content |
|
|
|
|
|
with gr.Blocks() as iface: |
|
gr.Markdown("# AI Generated Image Classification") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil') |
|
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold") |
|
inputs = [image_input, confidence_slider] |
|
with gr.Column(): |
|
image_output = gr.Image(label="Processed Image") |
|
|
|
results_html = gr.HTML(label="Model Predictions") |
|
outputs = [image_output, results_html] |
|
|
|
gr.Button("Predict").click(fn=predict_image_with_html, inputs=inputs, outputs=outputs) |
|
|
|
|
|
iface.launch() |