|
import spaces |
|
import gradio as gr |
|
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification |
|
from torchvision import transforms |
|
import torch |
|
from PIL import Image |
|
import pandas as pd |
|
import warnings |
|
import math |
|
|
|
|
|
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset") |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True) |
|
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") |
|
model_1 = model_1.to(device) |
|
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) |
|
|
|
|
|
model_2_path = "Heem2/AI-vs-Real-Image-Detection" |
|
clf_2 = pipeline("image-classification", model=model_2_path) |
|
|
|
|
|
models = ["Organika/sdxl-detector", "cmckinle/sdxl-flux-detector"] |
|
pipe0 = pipeline("image-classification", model=models[0]) |
|
pipe1 = pipeline("image-classification", model=models[1]) |
|
|
|
|
|
class_names_1 = ['artificial', 'real'] |
|
class_names_2 = ['AI Image', 'Real Image'] |
|
class_names_3 = ['AI', 'Real'] |
|
class_names_4 = ['AI', 'Real'] |
|
|
|
def softmax(vector): |
|
e = math.exp(vector - vector.max()) |
|
return e / e.sum() |
|
|
|
@spaces.GPU(duration=10) |
|
def predict_image(img, confidence_threshold): |
|
|
|
if not isinstance(img, Image.Image): |
|
raise ValueError(f"Expected a PIL Image, but got {type(img)}") |
|
|
|
|
|
if img.mode != 'RGB': |
|
img_pil = img.convert('RGB') |
|
else: |
|
img_pil = img |
|
|
|
|
|
img_pil = transforms.Resize((256, 256))(img_pil) |
|
|
|
|
|
try: |
|
prediction_1 = clf_1(img_pil) |
|
result_1 = {pred['label']: pred['score'] for pred in prediction_1} |
|
|
|
|
|
for class_name in class_names_1: |
|
if class_name not in result_1: |
|
result_1[class_name] = 0.0 |
|
|
|
|
|
if result_1['artificial'] >= confidence_threshold: |
|
label_1 = f"Label: artificial, Confidence: {result_1['artificial']:.4f}" |
|
elif result_1['real'] >= confidence_threshold: |
|
label_1 = f"Label: real, Confidence: {result_1['real']:.4f}" |
|
else: |
|
label_1 = "Uncertain Classification" |
|
except Exception as e: |
|
label_1 = f"Error: {str(e)}" |
|
|
|
|
|
try: |
|
prediction_2 = clf_2(img_pil) |
|
result_2 = {pred['label']: pred['score'] for pred in prediction_2} |
|
|
|
|
|
for class_name in class_names_2: |
|
if class_name not in result_2: |
|
result_2[class_name] = 0.0 |
|
|
|
|
|
if result_2['AI Image'] >= confidence_threshold: |
|
label_2 = f"Label: AI Image, Confidence: {result_2['AI Image']:.4f}" |
|
elif result_2['Real Image'] >= confidence_threshold: |
|
label_2 = f"Label: Real Image, Confidence: {result_2['Real Image']:.4f}" |
|
else: |
|
label_2 = "Uncertain Classification" |
|
except Exception as e: |
|
label_2 = f"Error: {str(e)}" |
|
|
|
|
|
try: |
|
prediction_3 = pipe0(img_pil) |
|
result_3 = {} |
|
for idx, result in enumerate(prediction_3): |
|
result_3[class_names_3[idx]] = float(result['score']) |
|
|
|
|
|
for class_name in class_names_3: |
|
if class_name not in result_3: |
|
result_3[class_name] = 0.0 |
|
|
|
|
|
if result_3['AI'] >= confidence_threshold: |
|
label_3 = f"Label: AI, Confidence: {result_3['AI']:.4f}" |
|
elif result_3['Real'] >= confidence_threshold: |
|
label_3 = f"Label: Real, Confidence: {result_3['Real']:.4f}" |
|
else: |
|
label_3 = "Uncertain Classification" |
|
except Exception as e: |
|
label_3 = f"Error: {str(e)}" |
|
|
|
|
|
try: |
|
prediction_4 = pipe1(img_pil) |
|
result_4 = {} |
|
for idx, result in enumerate(prediction_4): |
|
result_4[class_names_4[idx]] = float(result['score']) |
|
|
|
|
|
for class_name in class_names_4: |
|
if class_name not in result_4: |
|
result_4[class_name] = 0.0 |
|
|
|
|
|
if result_4['AI'] >= confidence_threshold: |
|
label_4 = f"Label: AI, Confidence: {result_4['AI']:.4f}" |
|
elif result_4['Real'] >= confidence_threshold: |
|
label_4 = f"Label: Real, Confidence: {result_4['Real']:.4f}" |
|
else: |
|
label_4 = "Uncertain Classification" |
|
except Exception as e: |
|
label_4 = f"Error: {str(e)}" |
|
|
|
|
|
combined_results = { |
|
"SwinV2": label_1, |
|
"AI-vs-Real-Image-Detection": label_2, |
|
"Organika/sdxl-detector": label_3, |
|
"cmckinle/sdxl-flux-detector": label_4 |
|
} |
|
|
|
return combined_results |
|
|
|
|
|
image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil') |
|
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold") |
|
label = gr.JSON(label="Model Predictions") |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict_image, |
|
inputs=[image, confidence_slider], |
|
outputs=label, |
|
title="AI Generated Classification" |
|
) |
|
iface.launch() |