|
import logging |
|
from PIL import Image |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
class ContextualIntelligenceAgent: |
|
def __init__(self): |
|
|
|
pass |
|
|
|
def infer_context_tags(self, image_data: dict, initial_predictions: dict) -> list[str]: |
|
"""Simulates an LLM inferring context tags based on image data and predictions.""" |
|
context_tags = [] |
|
|
|
|
|
if image_data.get("width", 0) > 1000 and image_data.get("height", 0) > 1000: |
|
context_tags.append("high_resolution") |
|
|
|
|
|
if any(v.get("Real Score", 0) > 0.9 for v in initial_predictions.values()): |
|
context_tags.append("potentially_natural_scene") |
|
|
|
|
|
|
|
|
|
mock_tags = ["outdoor", "sunny"] |
|
for tag in mock_tags: |
|
if tag not in context_tags: |
|
context_tags.append(tag) |
|
|
|
return context_tags |
|
|
|
class ForensicAnomalyDetectionAgent: |
|
def __init__(self): |
|
|
|
pass |
|
|
|
def analyze_forensic_outputs(self, forensic_output_descriptions: list[str]) -> dict: |
|
"""Simulates an LLM analyzing descriptions of forensic images for anomalies.""" |
|
anomalies = {"summary": "No significant anomalies detected.", "details": []} |
|
|
|
|
|
for desc in forensic_output_descriptions: |
|
if "strong edges" in desc.lower() and "ela" in desc.lower(): |
|
anomalies["summary"] = "Potential manipulation indicated by ELA." |
|
anomalies["details"].append("ELA: Unusually strong edges detected, suggesting image compositing.") |
|
if "unexpected patterns" in desc.lower() and "bit plane" in desc.lower(): |
|
anomalies["summary"] = "Anomalies detected in bit plane data." |
|
anomalies["details"].append("Bit Plane: Irregular patterns found, possibly indicating hidden data or processing.") |
|
|
|
if len(anomalies["details"]) > 0: |
|
anomalies["summary"] = "Multiple anomalies detected across forensic outputs." |
|
|
|
return anomalies |