|
import os |
|
import time |
|
from typing import Literal |
|
import spaces |
|
import gradio as gr |
|
import modelscope_studio.components.antd as antd |
|
import modelscope_studio.components.antdx as antdx |
|
import modelscope_studio.components.base as ms |
|
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification |
|
from torchvision import transforms |
|
import torch |
|
from PIL import Image |
|
import numpy as np |
|
import io |
|
import logging |
|
from utils.utils import softmax, augment_image, convert_pil_to_bytes |
|
from utils.gradient import gradient_processing |
|
from utils.minmax import preprocess as minmax_preprocess |
|
from utils.ela import genELA as ELA |
|
from utils.wavelet import wavelet_blocking_noise_estimation |
|
from utils.bitplane import bit_plane_extractor |
|
from utils.hf_logger import log_inference_data |
|
from utils.text_content import QUICK_INTRO, IMPLEMENTATION |
|
from models.monitoring_agents import EnsembleMonitorAgent, WeightOptimizationAgent, SystemHealthAgent |
|
from models.smart_agents import ContextualIntelligenceAgent, ForensicAnomalyDetectionAgent |
|
|
|
from forensics.registry import register_model, MODEL_REGISTRY, ModelEntry |
|
from models.weight_management import ModelWeightManager |
|
from dotenv import load_dotenv |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
logger = logging.getLogger(__name__) |
|
os.environ['HF_HUB_CACHE'] = './models' |
|
|
|
|
|
load_dotenv() |
|
print(os.getenv("HF_HUB_CACHE")) |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
header_style = { |
|
"textAlign": 'center', |
|
"color": '#fff', |
|
"height": 64, |
|
"paddingInline": 48, |
|
"lineHeight": '64px', |
|
"backgroundColor": '#4096ff', |
|
} |
|
|
|
content_style = { |
|
"textAlign": 'center', |
|
"minHeight": 120, |
|
"lineHeight": '120px', |
|
"color": '#fff', |
|
"backgroundColor": '#0958d9', |
|
} |
|
|
|
sider_style = { |
|
"textAlign": 'center', |
|
"lineHeight": '120px', |
|
"color": '#fff', |
|
"backgroundColor": '#1677ff', |
|
} |
|
|
|
footer_style = { |
|
"textAlign": 'center', |
|
"color": '#fff', |
|
"backgroundColor": '#4096ff', |
|
} |
|
|
|
layout_style = { |
|
"borderRadius": 8, |
|
"overflow": 'hidden', |
|
"width": 'calc(100% - 8px)', |
|
"maxWidth": 'calc(100% - 8px)', |
|
} |
|
|
|
MODEL_PATHS = { |
|
"model_1": "haywoodsloan/ai-image-detector-deploy", |
|
"model_2": "Heem2/AI-vs-Real-Image-Detection", |
|
"model_3": "Organika/sdxl-detector", |
|
"model_4": "cmckinle/sdxl-flux-detector_v1.1", |
|
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model", |
|
"model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22", |
|
"model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL", |
|
"model_7": "date3k2/vit-real-fake-classification-v4" |
|
} |
|
|
|
CLASS_NAMES = { |
|
"model_1": ['artificial', 'real'], |
|
"model_2": ['AI Image', 'Real Image'], |
|
"model_3": ['AI', 'Real'], |
|
"model_4": ['AI', 'Real'], |
|
"model_5": ['Realism', 'Deepfake'], |
|
"model_5b": ['Real', 'Deepfake'], |
|
"model_6": ['ai_gen', 'human'], |
|
"model_7": ['Fake', 'Real'], |
|
|
|
} |
|
|
|
def preprocess_resize_256(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((256, 256))(image) |
|
|
|
def preprocess_resize_224(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((224, 224))(image) |
|
|
|
def postprocess_pipeline(prediction, class_names): |
|
|
|
return {pred['label']: pred['score'] for pred in prediction} |
|
|
|
def postprocess_logits(outputs, class_names): |
|
|
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
|
|
|
|
|
|
|
|
|
|
def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path): |
|
entry = ModelEntry(model, preprocess, postprocess, class_names) |
|
entry.display_name = display_name |
|
entry.contributor = contributor |
|
entry.model_path = model_path |
|
MODEL_REGISTRY[model_id] = entry |
|
|
|
|
|
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True) |
|
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device) |
|
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) |
|
register_model_with_metadata( |
|
"model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"], |
|
display_name="SwinV2 Based", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"] |
|
) |
|
|
|
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device) |
|
register_model_with_metadata( |
|
"model_2", clf_2, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_2"], |
|
display_name="ViT Based", contributor="Heem2", model_path=MODEL_PATHS["model_2"] |
|
) |
|
|
|
|
|
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device) |
|
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device) |
|
def preprocess_256(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((256, 256))(image) |
|
def postprocess_logits_model3(outputs, class_names): |
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
def model3_infer(image): |
|
inputs = feature_extractor_3(image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model_3(**inputs) |
|
return outputs |
|
register_model_with_metadata( |
|
"model_3", model3_infer, preprocess_256, postprocess_logits_model3, CLASS_NAMES["model_3"], |
|
display_name="SDXL Dataset", contributor="Organika", model_path=MODEL_PATHS["model_3"] |
|
) |
|
|
|
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device) |
|
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device) |
|
def model4_infer(image): |
|
inputs = feature_extractor_4(image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model_4(**inputs) |
|
return outputs |
|
def postprocess_logits_model4(outputs, class_names): |
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
register_model_with_metadata( |
|
"model_4", model4_infer, preprocess_256, postprocess_logits_model4, CLASS_NAMES["model_4"], |
|
display_name="SDXL + FLUX", contributor="cmckinle", model_path=MODEL_PATHS["model_4"] |
|
) |
|
|
|
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device) |
|
register_model_with_metadata( |
|
"model_5", clf_5, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5"], |
|
display_name="Vit Based", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5"] |
|
) |
|
|
|
clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device) |
|
register_model_with_metadata( |
|
"model_5b", clf_5b, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5b"], |
|
display_name="Vit Based, Newer Dataset", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5b"] |
|
) |
|
|
|
image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True) |
|
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device) |
|
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device) |
|
register_model_with_metadata( |
|
"model_6", clf_6, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_6"], |
|
display_name="Swin, Midj + SDXL", contributor="ideepankarsharma2003", model_path=MODEL_PATHS["model_6"] |
|
) |
|
|
|
image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True) |
|
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device) |
|
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device) |
|
register_model_with_metadata( |
|
"model_7", clf_7, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_7"], |
|
display_name="ViT", contributor="temp", model_path=MODEL_PATHS["model_7"] |
|
) |
|
|
|
|
|
|
|
def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict: |
|
entry = MODEL_REGISTRY[model_id] |
|
img = entry.preprocess(image) |
|
try: |
|
result = entry.model(img) |
|
scores = entry.postprocess(result, entry.class_names) |
|
|
|
ai_score = scores.get(entry.class_names[0], 0.0) |
|
real_score = scores.get(entry.class_names[1], 0.0) |
|
label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN") |
|
return { |
|
"Model": entry.display_name, |
|
"Contributor": entry.contributor, |
|
"HF Model Path": entry.model_path, |
|
"AI Score": ai_score, |
|
"Real Score": real_score, |
|
"Label": label |
|
} |
|
except Exception as e: |
|
return { |
|
"Model": entry.display_name, |
|
"Contributor": entry.contributor, |
|
"HF Model Path": entry.model_path, |
|
"AI Score": None, |
|
"Real Score": None, |
|
"Label": f"Error: {str(e)}" |
|
} |
|
|
|
|
|
|
|
def predict_image(img, confidence_threshold): |
|
model_ids = [ |
|
"model_1", "model_2", "model_3", "model_4", "model_5", "model_5b", "model_6", "model_7" |
|
] |
|
results = [infer(img, model_id, confidence_threshold) for model_id in model_ids] |
|
return img, results |
|
|
|
def get_consensus_label(results): |
|
labels = [r[4] for r in results if len(r) > 4] |
|
if not labels: |
|
return "No results" |
|
consensus = max(set(labels), key=labels.count) |
|
color = {"AI": "red", "REAL": "green", "UNCERTAIN": "orange"}.get(consensus, "gray") |
|
return f"<b><span style='color:{color}'>{consensus}</span></b>" |
|
|
|
|
|
|
|
def predict_image_with_json(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength): |
|
|
|
monitor_agent = EnsembleMonitorAgent() |
|
weight_manager = ModelWeightManager() |
|
optimization_agent = WeightOptimizationAgent(weight_manager) |
|
health_agent = SystemHealthAgent() |
|
|
|
context_agent = ContextualIntelligenceAgent() |
|
anomaly_agent = ForensicAnomalyDetectionAgent() |
|
|
|
|
|
health_agent.monitor_system_health() |
|
|
|
if augment_methods: |
|
img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength) |
|
else: |
|
img_pil = img |
|
img_np_og = np.array(img) |
|
|
|
|
|
model_predictions_raw = {} |
|
confidence_scores = {} |
|
results = [] |
|
|
|
for model_id in MODEL_REGISTRY: |
|
model_start = time.time() |
|
result = infer(img_pil, model_id, confidence_threshold) |
|
model_end = time.time() |
|
|
|
|
|
monitor_agent.monitor_prediction( |
|
model_id, |
|
result["Label"], |
|
max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)), |
|
model_end - model_start |
|
) |
|
|
|
model_predictions_raw[model_id] = result |
|
confidence_scores[model_id] = max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)) |
|
results.append(result) |
|
|
|
|
|
image_data_for_context = { |
|
"width": img.width, |
|
"height": img.height, |
|
"mode": img.mode, |
|
|
|
} |
|
detected_context_tags = context_agent.infer_context_tags(image_data_for_context, model_predictions_raw) |
|
logger.info(f"Detected context tags: {detected_context_tags}") |
|
|
|
|
|
adjusted_weights = weight_manager.adjust_weights(model_predictions_raw, confidence_scores, context_tags=detected_context_tags) |
|
|
|
|
|
|
|
|
|
|
|
weighted_predictions = { |
|
"AI": 0.0, |
|
"REAL": 0.0, |
|
"UNCERTAIN": 0.0 |
|
} |
|
|
|
for model_id, prediction in model_predictions_raw.items(): |
|
|
|
prediction_label = prediction.get("Label") |
|
if prediction_label in weighted_predictions: |
|
weighted_predictions[prediction_label] += adjusted_weights[model_id] |
|
else: |
|
|
|
logger.warning(f"Unexpected prediction label '{prediction_label}' from model '{model_id}'. Skipping its weight in consensus.") |
|
|
|
final_prediction_label = "UNCERTAIN" |
|
if weighted_predictions["AI"] > weighted_predictions["REAL"] and weighted_predictions["AI"] > weighted_predictions["UNCERTAIN"]: |
|
final_prediction_label = "AI" |
|
elif weighted_predictions["REAL"] > weighted_predictions["AI"] and weighted_predictions["REAL"] > weighted_predictions["UNCERTAIN"]: |
|
final_prediction_label = "REAL" |
|
|
|
|
|
optimization_agent.analyze_performance(final_prediction_label, None) |
|
|
|
|
|
gradient_image = gradient_processing(img_np_og) |
|
minmax_image = minmax_preprocess(img_np_og) |
|
|
|
|
|
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True) |
|
|
|
|
|
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True) |
|
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False) |
|
|
|
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, minmax_image] |
|
|
|
|
|
forensic_output_descriptions = [ |
|
f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}", |
|
"ELA analysis (Pass 1): Grayscale error map, quality 75.", |
|
"ELA analysis (Pass 2): Grayscale error map, quality 75, enhanced contrast.", |
|
"ELA analysis (Pass 3): Color error map, quality 75, enhanced contrast.", |
|
"Gradient processing: Highlights edges and transitions.", |
|
"MinMax processing: Deviations in local pixel values." |
|
] |
|
|
|
|
|
|
|
|
|
anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions) |
|
logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}") |
|
|
|
|
|
|
|
table_rows = [[ |
|
r.get("Model", ""), |
|
r.get("Contributor", ""), |
|
r.get("AI Score", ""), |
|
r.get("Real Score", ""), |
|
r.get("Label", "") |
|
] for r in results] |
|
|
|
|
|
consensus_html = f"<b><span style='color:{'red' if final_prediction_label == 'AI' else ('green' if final_prediction_label == 'REAL' else 'orange')}'>{final_prediction_label}</span></b>" |
|
|
|
|
|
inference_params = { |
|
"confidence_threshold": confidence_threshold, |
|
"augment_methods": augment_methods, |
|
"rotate_degrees": rotate_degrees, |
|
"noise_level": noise_level, |
|
"sharpen_strength": sharpen_strength, |
|
"detected_context_tags": detected_context_tags |
|
} |
|
|
|
ensemble_output_data = { |
|
"final_prediction_label": final_prediction_label, |
|
"weighted_predictions": weighted_predictions, |
|
"adjusted_weights": adjusted_weights |
|
} |
|
|
|
|
|
agent_monitoring_data_log = { |
|
"ensemble_monitor": { |
|
"alerts": monitor_agent.alerts, |
|
"performance_metrics": monitor_agent.performance_metrics |
|
}, |
|
"weight_optimization": { |
|
"prediction_history_length": len(optimization_agent.prediction_history), |
|
|
|
}, |
|
"system_health": { |
|
"memory_usage": health_agent.health_metrics["memory_usage"], |
|
"gpu_utilization": health_agent.health_metrics["gpu_utilization"] |
|
}, |
|
"context_intelligence": { |
|
"detected_context_tags": detected_context_tags |
|
}, |
|
"forensic_anomaly_detection": anomaly_detection_results |
|
} |
|
|
|
|
|
log_inference_data( |
|
original_image=img, |
|
inference_params=inference_params, |
|
model_predictions=results, |
|
ensemble_output=ensemble_output_data, |
|
forensic_images=forensics_images, |
|
agent_monitoring_data=agent_monitoring_data_log, |
|
human_feedback=None |
|
) |
|
|
|
return img_pil, forensics_images, table_rows, results, consensus_html |
|
|
|
with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ overflow-y: hidden !important;} .ms-gr-ant-welcome-icon{ height:unset !important;} .tabs{margin-top:10px;}") as demo: |
|
with ms.Application() as app: |
|
with antd.ConfigProvider(): |
|
antdx.Welcome( |
|
icon="https://cdn-avatars.huggingface.co/v1/production/uploads/639daf827270667011153fbc/WpeSFhuB81DY-1TjNUmV_.png", |
|
title="Welcome to Project OpenSight", |
|
description="The OpenSight aims to be an open-source SOTA generated image detection model. This HF Space is not only an introduction but a educational playground for the public to evaluate and challenge current open source models. **Space will be upgraded shortly; inference on all 6 models should take about 1.2~ seconds.** " |
|
) |
|
with gr.Tab("👀 Detection Models Eval / Playground"): |
|
gr.Markdown("# Open Source Detection Models Found on the Hub\n\n - **Space will be upgraded shortly;** inference on all 6 models should take about 1.2~ seconds once we're back on CUDA.\n - The **Community Forensics** mother of all detection models is now available for inference, head to the middle tab above this.\n - Lots of exciting things coming up, stay tuned!") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='pil') |
|
with gr.Accordion("Settings (Optional)", open=False, elem_id="settings_accordion"): |
|
augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods") |
|
rotate_slider = gr.Slider(0, 45, value=2, step=1, label="Rotate Degrees", visible=False) |
|
noise_slider = gr.Slider(0, 50, value=4, step=1, label="Noise Level", visible=False) |
|
sharpen_slider = gr.Slider(0, 50, value=11, step=1, label="Sharpen Strength", visible=False) |
|
confidence_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Confidence Threshold") |
|
inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider] |
|
predict_button = gr.Button("Predict") |
|
augment_button = gr.Button("Augment & Predict") |
|
image_output = gr.Image(label="Processed Image", visible=False) |
|
|
|
|
|
with gr.Column(scale=2): |
|
|
|
results_table = gr.Dataframe( |
|
label="Model Predictions", |
|
headers=["Model", "Contributor", "AI Score", "Real Score", "Label"], |
|
datatype=["str", "str", "number", "number", "str"] |
|
) |
|
forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery") |
|
with gr.Accordion("Debug Output (Raw JSON)", open=False): |
|
debug_json = gr.JSON(label="Raw Model Results") |
|
consensus_md = gr.Markdown(label="Consensus", value="") |
|
|
|
outputs = [image_output, forensics_gallery, results_table, debug_json, consensus_md] |
|
|
|
|
|
augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider]) |
|
augment_checkboxgroup.change(lambda methods: gr.update(visible="add_noise" in methods), inputs=[augment_checkboxgroup], outputs=[noise_slider]) |
|
augment_checkboxgroup.change(lambda methods: gr.update(visible="sharpen" in methods), inputs=[augment_checkboxgroup], outputs=[sharpen_slider]) |
|
|
|
predict_button.click( |
|
fn=predict_image_with_json, |
|
inputs=inputs, |
|
outputs=outputs |
|
) |
|
augment_button.click( |
|
fn=predict_image_with_json, |
|
inputs=[ |
|
image_input, |
|
confidence_slider, |
|
gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], value=["rotate", "add_noise", "sharpen"], visible=False), |
|
rotate_slider, |
|
noise_slider, |
|
sharpen_slider |
|
], |
|
outputs=outputs |
|
) |
|
with gr.Tab("🙈 Project Introduction"): |
|
gr.Markdown(QUICK_INTRO) |
|
|
|
with gr.Tab("👑 Community Forensics Preview"): |
|
temp_space = gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces") |
|
|
|
with gr.Tab("🥇 Leaderboard"): |
|
gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soon™") |
|
|
|
with gr.Tab("Wavelet Blocking Noise Estimation", visible=False): |
|
gr.Interface( |
|
fn=wavelet_blocking_noise_estimation, |
|
inputs=[gr.Image(type="pil"), gr.Slider(1, 32, value=8, step=1, label="Block Size")], |
|
outputs=gr.Image(type="pil"), |
|
title="Wavelet-Based Noise Analysis", |
|
description="Analyzes image noise patterns using wavelet decomposition. This tool helps detect compression artifacts and artificial noise patterns that may indicate image manipulation. Higher noise levels in specific regions can reveal areas of potential tampering." |
|
) |
|
|
|
|
|
with gr.Tab("Bit Plane Values", visible=False): |
|
gr.Interface( |
|
fn=bit_plane_extractor, |
|
inputs=[ |
|
gr.Image(type="pil"), |
|
gr.Dropdown(["Luminance", "Red", "Green", "Blue", "RGB Norm"], label="Channel", value="Luminance"), |
|
gr.Slider(0, 7, value=0, step=1, label="Bit Plane"), |
|
gr.Dropdown(["Disabled", "Median", "Gaussian"], label="Filter", value="Disabled") |
|
], |
|
outputs=gr.Image(type="pil"), |
|
title="Bit Plane Analysis", |
|
description="Extracts and visualizes individual bit planes from different color channels. This forensic tool helps identify hidden patterns and artifacts in image data that may indicate manipulation. Different bit planes can reveal inconsistencies in image processing or editing." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(mcp_server=True) |