LPX
refactor: reorganize agent structure by moving models to agents directory, update logging level, and enhance .gitignore for model files
c1d03da
raw
history blame
2.68 kB
import logging
from PIL import Image
logger = logging.getLogger(__name__)
class ContextualIntelligenceAgent:
def __init__(self):
# In a real scenario, this would involve an LLM call or a sophisticated rule engine
pass
def infer_context_tags(self, image_data: dict, initial_predictions: dict) -> list[str]:
"""Simulates an LLM inferring context tags based on image data and predictions."""
context_tags = []
# Boilerplate logic: infer tags based on simple cues
if image_data.get("width", 0) > 1000 and image_data.get("height", 0) > 1000:
context_tags.append("high_resolution")
# Example based on initial broad prediction (e.g., if any model strongly predicts 'real')
if any(v.get("Real Score", 0) > 0.9 for v in initial_predictions.values()):
context_tags.append("potentially_natural_scene")
# Mock external detection (e.g., from a simpler scene classification model or EXIF data)
# For demonstration, we'll hardcode some possible tags here.
# In a real system, you'd feed actual image features or metadata to an LLM.
mock_tags = ["outdoor", "sunny"] # These could be returned by an actual LLM based on input
for tag in mock_tags:
if tag not in context_tags:
context_tags.append(tag)
return context_tags
class ForensicAnomalyDetectionAgent:
def __init__(self):
# In a real scenario, this would involve an LLM call to analyze textual descriptions
pass
def analyze_forensic_outputs(self, forensic_output_descriptions: list[str]) -> dict:
"""Simulates an LLM analyzing descriptions of forensic images for anomalies."""
anomalies = {"summary": "No significant anomalies detected.", "details": []}
# Boilerplate logic: look for keywords in descriptions
for desc in forensic_output_descriptions:
if "strong edges" in desc.lower() and "ela" in desc.lower():
anomalies["summary"] = "Potential manipulation indicated by ELA."
anomalies["details"].append("ELA: Unusually strong edges detected, suggesting image compositing.")
if "unexpected patterns" in desc.lower() and "bit plane" in desc.lower():
anomalies["summary"] = "Anomalies detected in bit plane data."
anomalies["details"].append("Bit Plane: Irregular patterns found, possibly indicating hidden data or processing.")
if len(anomalies["details"]) > 0:
anomalies["summary"] = "Multiple anomalies detected across forensic outputs."
return anomalies