LPX
refactor: reorganize agent structure by moving models to agents directory, update logging level, and enhance .gitignore for model files
c1d03da
import os | |
import time | |
from typing import Literal | |
import spaces | |
import gradio as gr | |
import modelscope_studio.components.antd as antd | |
import modelscope_studio.components.antdx as antdx | |
import modelscope_studio.components.base as ms | |
from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification | |
from torchvision import transforms | |
import torch | |
from PIL import Image | |
import numpy as np | |
import io | |
import logging | |
from utils.utils import softmax, augment_image, convert_pil_to_bytes | |
from utils.gradient import gradient_processing | |
from utils.minmax import preprocess as minmax_preprocess | |
from utils.ela import genELA as ELA | |
from utils.wavelet import wavelet_blocking_noise_estimation | |
from utils.bitplane import bit_plane_extractor | |
from utils.hf_logger import log_inference_data | |
from utils.text_content import QUICK_INTRO, IMPLEMENTATION | |
from agents.monitoring_agents import EnsembleMonitorAgent, WeightOptimizationAgent, SystemHealthAgent | |
from agents.smart_agents import ContextualIntelligenceAgent, ForensicAnomalyDetectionAgent | |
from forensics.registry import register_model, MODEL_REGISTRY, ModelEntry | |
from agents.weight_management import ModelWeightManager | |
from dotenv import load_dotenv | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
os.environ['HF_HUB_CACHE'] = './models' | |
load_dotenv() | |
# print(os.getenv("HF_HUB_CACHE")) | |
# Ensure using GPU if available | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
header_style = { | |
"textAlign": 'center', | |
"color": '#fff', | |
"height": 64, | |
"paddingInline": 48, | |
"lineHeight": '64px', | |
"backgroundColor": '#4096ff', | |
} | |
content_style = { | |
"textAlign": 'center', | |
"minHeight": 120, | |
"lineHeight": '120px', | |
"color": '#fff', | |
"backgroundColor": '#0958d9', | |
} | |
sider_style = { | |
"textAlign": 'center', | |
"lineHeight": '120px', | |
"color": '#fff', | |
"backgroundColor": '#1677ff', | |
} | |
footer_style = { | |
"textAlign": 'center', | |
"color": '#fff', | |
"backgroundColor": '#4096ff', | |
} | |
layout_style = { | |
"borderRadius": 8, | |
"overflow": 'hidden', | |
"width": 'calc(100% - 8px)', | |
"maxWidth": 'calc(100% - 8px)', | |
} | |
# Model paths and class names | |
MODEL_PATHS = { | |
"model_1": "haywoodsloan/ai-image-detector-deploy", | |
"model_2": "Heem2/AI-vs-Real-Image-Detection", | |
"model_3": "Organika/sdxl-detector", | |
"model_4": "cmckinle/sdxl-flux-detector_v1.1", | |
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model", | |
"model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22", | |
"model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL", | |
"model_7": "date3k2/vit-real-fake-classification-v4" | |
} | |
CLASS_NAMES = { | |
"model_1": ['artificial', 'real'], | |
"model_2": ['AI Image', 'Real Image'], | |
"model_3": ['AI', 'Real'], | |
"model_4": ['AI', 'Real'], | |
"model_5": ['Realism', 'Deepfake'], | |
"model_5b": ['Real', 'Deepfake'], | |
"model_6": ['ai_gen', 'human'], | |
"model_7": ['Fake', 'Real'], | |
} | |
def preprocess_resize_256(image): | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
return transforms.Resize((256, 256))(image) | |
def preprocess_resize_224(image): | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
return transforms.Resize((224, 224))(image) | |
def postprocess_pipeline(prediction, class_names): | |
# Assumes HuggingFace pipeline output | |
return {pred['label']: pred['score'] for pred in prediction} | |
def postprocess_logits(outputs, class_names): | |
# Assumes model output with logits | |
logits = outputs.logits.cpu().numpy()[0] | |
probabilities = softmax(logits) | |
return {class_names[i]: probabilities[i] for i in range(len(class_names))} | |
# Expand ModelEntry to include metadata | |
# (Assume ModelEntry is updated in registry.py to accept display_name, contributor, model_path) | |
# If not, we will update registry.py accordingly after this. | |
def register_model_with_metadata(model_id, model, preprocess, postprocess, class_names, display_name, contributor, model_path): | |
entry = ModelEntry(model, preprocess, postprocess, class_names) | |
entry.display_name = display_name | |
entry.contributor = contributor | |
entry.model_path = model_path | |
MODEL_REGISTRY[model_id] = entry | |
# Load and register models (example for two models) | |
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True) | |
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]).to(device) | |
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) | |
register_model_with_metadata( | |
"model_1", clf_1, preprocess_resize_256, postprocess_pipeline, CLASS_NAMES["model_1"], | |
display_name="SwinV2 Based", contributor="haywoodsloan", model_path=MODEL_PATHS["model_1"] | |
) | |
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device) | |
register_model_with_metadata( | |
"model_2", clf_2, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_2"], | |
display_name="ViT Based", contributor="Heem2", model_path=MODEL_PATHS["model_2"] | |
) | |
# Register remaining models | |
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device) | |
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device) | |
def preprocess_256(image): | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
return transforms.Resize((256, 256))(image) | |
def postprocess_logits_model3(outputs, class_names): | |
logits = outputs.logits.cpu().numpy()[0] | |
probabilities = softmax(logits) | |
return {class_names[i]: probabilities[i] for i in range(len(class_names))} | |
def model3_infer(image): | |
inputs = feature_extractor_3(image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model_3(**inputs) | |
return outputs | |
register_model_with_metadata( | |
"model_3", model3_infer, preprocess_256, postprocess_logits_model3, CLASS_NAMES["model_3"], | |
display_name="SDXL Dataset", contributor="Organika", model_path=MODEL_PATHS["model_3"] | |
) | |
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device) | |
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device) | |
def model4_infer(image): | |
inputs = feature_extractor_4(image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model_4(**inputs) | |
return outputs | |
def postprocess_logits_model4(outputs, class_names): | |
logits = outputs.logits.cpu().numpy()[0] | |
probabilities = softmax(logits) | |
return {class_names[i]: probabilities[i] for i in range(len(class_names))} | |
register_model_with_metadata( | |
"model_4", model4_infer, preprocess_256, postprocess_logits_model4, CLASS_NAMES["model_4"], | |
display_name="SDXL + FLUX", contributor="cmckinle", model_path=MODEL_PATHS["model_4"] | |
) | |
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device) | |
register_model_with_metadata( | |
"model_5", clf_5, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5"], | |
display_name="Vit Based", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5"] | |
) | |
clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device) | |
register_model_with_metadata( | |
"model_5b", clf_5b, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_5b"], | |
display_name="Vit Based, Newer Dataset", contributor="prithivMLmods", model_path=MODEL_PATHS["model_5b"] | |
) | |
image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True) | |
model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device) | |
clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device) | |
register_model_with_metadata( | |
"model_6", clf_6, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_6"], | |
display_name="Swin, Midj + SDXL", contributor="ideepankarsharma2003", model_path=MODEL_PATHS["model_6"] | |
) | |
image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True) | |
model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device) | |
clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device) | |
register_model_with_metadata( | |
"model_7", clf_7, preprocess_resize_224, postprocess_pipeline, CLASS_NAMES["model_7"], | |
display_name="ViT", contributor="temp", model_path=MODEL_PATHS["model_7"] | |
) | |
# Generic inference function | |
def infer(image: Image.Image, model_id: str, confidence_threshold: float = 0.75) -> dict: | |
entry = MODEL_REGISTRY[model_id] | |
img = entry.preprocess(image) | |
try: | |
result = entry.model(img) | |
scores = entry.postprocess(result, entry.class_names) | |
# Flatten output for Dataframe: include metadata and both class scores | |
ai_score = scores.get(entry.class_names[0], 0.0) | |
real_score = scores.get(entry.class_names[1], 0.0) | |
label = "AI" if ai_score >= confidence_threshold else ("REAL" if real_score >= confidence_threshold else "UNCERTAIN") | |
return { | |
"Model": entry.display_name, | |
"Contributor": entry.contributor, | |
"HF Model Path": entry.model_path, | |
"AI Score": ai_score, | |
"Real Score": real_score, | |
"Label": label | |
} | |
except Exception as e: | |
return { | |
"Model": entry.display_name, | |
"Contributor": entry.contributor, | |
"HF Model Path": entry.model_path, | |
"AI Score": None, | |
"Real Score": None, | |
"Label": f"Error: {str(e)}" | |
} | |
# Update predict_image to use all registered models in order | |
def predict_image(img, confidence_threshold): | |
model_ids = [ | |
"model_1", "model_2", "model_3", "model_4", "model_5", "model_5b", "model_6", "model_7" | |
] | |
results = [infer(img, model_id, confidence_threshold) for model_id in model_ids] | |
return img, results | |
def get_consensus_label(results): | |
labels = [r[4] for r in results if len(r) > 4] | |
if not labels: | |
return "No results" | |
consensus = max(set(labels), key=labels.count) | |
color = {"AI": "red", "REAL": "green", "UNCERTAIN": "orange"}.get(consensus, "gray") | |
return f"<b><span style='color:{color}'>{consensus}</span></b>" | |
# Update predict_image_with_json to return consensus label | |
def predict_image_with_json(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength): | |
# Initialize agents | |
monitor_agent = EnsembleMonitorAgent() | |
weight_manager = ModelWeightManager() | |
optimization_agent = WeightOptimizationAgent(weight_manager) | |
health_agent = SystemHealthAgent() | |
# New smart agents | |
context_agent = ContextualIntelligenceAgent() | |
anomaly_agent = ForensicAnomalyDetectionAgent() | |
# Monitor system health | |
health_agent.monitor_system_health() | |
if augment_methods: | |
img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength) | |
else: | |
img_pil = img | |
img_np_og = np.array(img) # Convert PIL Image to NumPy array | |
# 1. Get initial predictions from all models | |
model_predictions_raw = {} | |
confidence_scores = {} | |
results = [] # To store the results for the DataFrame | |
for model_id in MODEL_REGISTRY: | |
model_start = time.time() | |
result = infer(img_pil, model_id, confidence_threshold) | |
model_end = time.time() | |
# Monitor individual model performance | |
monitor_agent.monitor_prediction( | |
model_id, | |
result["Label"], | |
max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)), | |
model_end - model_start | |
) | |
model_predictions_raw[model_id] = result # Store the full result dictionary | |
confidence_scores[model_id] = max(result.get("AI Score", 0.0), result.get("Real Score", 0.0)) | |
results.append(result) # Add individual model result to the list | |
# 2. Infer context tags using ContextualIntelligenceAgent | |
image_data_for_context = { | |
"width": img.width, | |
"height": img.height, | |
"mode": img.mode, | |
# Add more features like EXIF data if exif_full_dump is used | |
} | |
detected_context_tags = context_agent.infer_context_tags(image_data_for_context, model_predictions_raw) | |
logger.info(f"Detected context tags: {detected_context_tags}") | |
# 3. Get adjusted weights, passing context tags | |
adjusted_weights = weight_manager.adjust_weights(model_predictions_raw, confidence_scores, context_tags=detected_context_tags) | |
# 4. Optimize weights if needed | |
# `final_prediction_label` is determined AFTER weighted consensus, so analyze_performance will be called later | |
# 5. Calculate weighted consensus | |
weighted_predictions = { | |
"AI": 0.0, | |
"REAL": 0.0, | |
"UNCERTAIN": 0.0 | |
} | |
for model_id, prediction in model_predictions_raw.items(): # Use raw predictions for weighting | |
# Ensure the prediction label is valid for weighted_predictions | |
prediction_label = prediction.get("Label") # Extract the label | |
if prediction_label in weighted_predictions: | |
weighted_predictions[prediction_label] += adjusted_weights[model_id] | |
else: | |
# Handle cases where prediction might be an error or unexpected label | |
logger.warning(f"Unexpected prediction label '{prediction_label}' from model '{model_id}'. Skipping its weight in consensus.") | |
final_prediction_label = "UNCERTAIN" | |
if weighted_predictions["AI"] > weighted_predictions["REAL"] and weighted_predictions["AI"] > weighted_predictions["UNCERTAIN"]: | |
final_prediction_label = "AI" | |
elif weighted_predictions["REAL"] > weighted_predictions["AI"] and weighted_predictions["REAL"] > weighted_predictions["UNCERTAIN"]: | |
final_prediction_label = "REAL" | |
# Call analyze_performance after final_prediction_label is known | |
optimization_agent.analyze_performance(final_prediction_label, None) | |
# 6. Perform forensic processing | |
gradient_image = gradient_processing(img_np_og) # Added gradient processing | |
minmax_image = minmax_preprocess(img_np_og) # Added MinMax processing | |
# First pass - standard analysis | |
ela1 = ELA(img_np_og, quality=75, scale=50, contrast=20, linear=False, grayscale=True) | |
# Second pass - enhanced visibility | |
ela2 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=True) | |
ela3 = ELA(img_np_og, quality=75, scale=75, contrast=25, linear=False, grayscale=False) | |
forensics_images = [img_pil, ela1, ela2, ela3, gradient_image, minmax_image] | |
# 7. Generate boilerplate descriptions for forensic outputs for anomaly agent | |
forensic_output_descriptions = [ | |
f"Original augmented image (PIL): {img_pil.width}x{img_pil.height}", | |
"ELA analysis (Pass 1): Grayscale error map, quality 75.", | |
"ELA analysis (Pass 2): Grayscale error map, quality 75, enhanced contrast.", | |
"ELA analysis (Pass 3): Color error map, quality 75, enhanced contrast.", | |
"Gradient processing: Highlights edges and transitions.", | |
"MinMax processing: Deviations in local pixel values." | |
] | |
# You could also add descriptions for Wavelet and Bit Plane if they were dynamic outputs | |
# For instance, if wavelet_blocking_noise_estimation had parameters that changed and you wanted to describe them. | |
# 8. Analyze forensic outputs for anomalies using ForensicAnomalyDetectionAgent | |
anomaly_detection_results = anomaly_agent.analyze_forensic_outputs(forensic_output_descriptions) | |
logger.info(f"Forensic anomaly detection: {anomaly_detection_results['summary']}") | |
# Prepare table rows for Dataframe (exclude model path) | |
table_rows = [[ | |
r.get("Model", ""), | |
r.get("Contributor", ""), | |
r.get("AI Score", ""), | |
r.get("Real Score", ""), | |
r.get("Label", "") | |
] for r in results] | |
# The get_consensus_label function is now replaced by final_prediction_label from weighted consensus | |
consensus_html = f"<b><span style='color:{'red' if final_prediction_label == 'AI' else ('green' if final_prediction_label == 'REAL' else 'orange')}'>{final_prediction_label}</span></b>" | |
# Prepare data for logging to Hugging Face dataset | |
inference_params = { | |
"confidence_threshold": confidence_threshold, | |
"augment_methods": augment_methods, | |
"rotate_degrees": rotate_degrees, | |
"noise_level": noise_level, | |
"sharpen_strength": sharpen_strength, | |
"detected_context_tags": detected_context_tags | |
} | |
ensemble_output_data = { | |
"final_prediction_label": final_prediction_label, | |
"weighted_predictions": weighted_predictions, | |
"adjusted_weights": adjusted_weights | |
} | |
# Collect agent monitoring data | |
agent_monitoring_data_log = { | |
"ensemble_monitor": { | |
"alerts": monitor_agent.alerts, | |
"performance_metrics": monitor_agent.performance_metrics | |
}, | |
"weight_optimization": { | |
"prediction_history_length": len(optimization_agent.prediction_history), | |
# You might add a summary of recent accuracy here if _calculate_accuracy is exposed | |
}, | |
"system_health": { | |
"memory_usage": health_agent.health_metrics["memory_usage"], | |
"gpu_utilization": health_agent.health_metrics["gpu_utilization"] | |
}, | |
"context_intelligence": { | |
"detected_context_tags": detected_context_tags | |
}, | |
"forensic_anomaly_detection": anomaly_detection_results | |
} | |
# Log the inference data | |
log_inference_data( | |
original_image=img, # Use the original uploaded image | |
inference_params=inference_params, | |
model_predictions=results, # This already contains detailed results for each model | |
ensemble_output=ensemble_output_data, | |
forensic_images=forensics_images, # This is the list of PIL images generated by forensic tools | |
agent_monitoring_data=agent_monitoring_data_log, | |
human_feedback=None # This can be populated later with human review data | |
) | |
return img_pil, forensics_images, table_rows, results, consensus_html | |
with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ overflow-y: hidden !important;} .ms-gr-ant-welcome-icon{ height:unset !important;} .tabs{margin-top:10px;}") as demo: | |
with ms.Application() as app: | |
with antd.ConfigProvider(): | |
antdx.Welcome( | |
icon="https://cdn-avatars.huggingface.co/v1/production/uploads/639daf827270667011153fbc/WpeSFhuB81DY-1TjNUmV_.png", | |
title="Welcome to Project OpenSight", | |
description="The OpenSight aims to be an open-source SOTA generated image detection model. This HF Space is not only an introduction but a educational playground for the public to evaluate and challenge current open source models. **Space will be upgraded shortly; inference on all 6 models should take about 1.2~ seconds.** " | |
) | |
with gr.Tab("👀 Detection Models Eval / Playground"): | |
gr.Markdown("# Open Source Detection Models Found on the Hub\n\n - **Space will be upgraded shortly;** inference on all 6 models should take about 1.2~ seconds once we're back on CUDA.\n - The **Community Forensics** mother of all detection models is now available for inference, head to the middle tab above this.\n - Lots of exciting things coming up, stay tuned!") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload', 'webcam'], type='pil') | |
with gr.Accordion("Settings (Optional)", open=False, elem_id="settings_accordion"): | |
augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods") | |
rotate_slider = gr.Slider(0, 45, value=2, step=1, label="Rotate Degrees", visible=False) | |
noise_slider = gr.Slider(0, 50, value=4, step=1, label="Noise Level", visible=False) | |
sharpen_slider = gr.Slider(0, 50, value=11, step=1, label="Sharpen Strength", visible=False) | |
confidence_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Confidence Threshold") | |
inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider] | |
predict_button = gr.Button("Predict") | |
augment_button = gr.Button("Augment & Predict") | |
image_output = gr.Image(label="Processed Image", visible=False) | |
with gr.Column(scale=2): | |
# Use Gradio-native Dataframe to display results with headers | |
results_table = gr.Dataframe( | |
label="Model Predictions", | |
headers=["Model", "Contributor", "AI Score", "Real Score", "Label"], | |
datatype=["str", "str", "number", "number", "str"] | |
) | |
forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[4], rows=[2], container=False, height="auto", object_fit="contain", elem_id="post-gallery") | |
with gr.Accordion("Debug Output (Raw JSON)", open=False): | |
debug_json = gr.JSON(label="Raw Model Results") | |
consensus_md = gr.Markdown(label="Consensus", value="") | |
outputs = [image_output, forensics_gallery, results_table, debug_json, consensus_md] | |
# Show/hide rotate slider based on selected augmentation method | |
augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider]) | |
augment_checkboxgroup.change(lambda methods: gr.update(visible="add_noise" in methods), inputs=[augment_checkboxgroup], outputs=[noise_slider]) | |
augment_checkboxgroup.change(lambda methods: gr.update(visible="sharpen" in methods), inputs=[augment_checkboxgroup], outputs=[sharpen_slider]) | |
predict_button.click( | |
fn=predict_image_with_json, | |
inputs=inputs, | |
outputs=outputs | |
) | |
augment_button.click( # Connect Augment button to the function | |
fn=predict_image_with_json, | |
inputs=[ | |
image_input, | |
confidence_slider, | |
gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], value=["rotate", "add_noise", "sharpen"], visible=False), # Default values | |
rotate_slider, | |
noise_slider, | |
sharpen_slider | |
], | |
outputs=outputs | |
) | |
with gr.Tab("🙈 Project Introduction"): | |
gr.Markdown(QUICK_INTRO) | |
with gr.Tab("👑 Community Forensics Preview"): | |
temp_space = gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces") | |
# preview # no idea if this will work | |
with gr.Tab("🥇 Leaderboard"): | |
gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soon™") | |
with gr.Tab("Wavelet Blocking Noise Estimation", visible=False): | |
gr.Interface( | |
fn=wavelet_blocking_noise_estimation, | |
inputs=[gr.Image(type="pil"), gr.Slider(1, 32, value=8, step=1, label="Block Size")], | |
outputs=gr.Image(type="pil"), | |
title="Wavelet-Based Noise Analysis", | |
description="Analyzes image noise patterns using wavelet decomposition. This tool helps detect compression artifacts and artificial noise patterns that may indicate image manipulation. Higher noise levels in specific regions can reveal areas of potential tampering." | |
) | |
with gr.Tab("Bit Plane Values", visible=False): | |
gr.Interface( | |
fn=bit_plane_extractor, | |
inputs=[ | |
gr.Image(type="pil"), | |
gr.Dropdown(["Luminance", "Red", "Green", "Blue", "RGB Norm"], label="Channel", value="Luminance"), | |
gr.Slider(0, 7, value=0, step=1, label="Bit Plane"), | |
gr.Dropdown(["Disabled", "Median", "Gaussian"], label="Filter", value="Disabled") | |
], | |
outputs=gr.Image(type="pil"), | |
title="Bit Plane Analysis", | |
description="Extracts and visualizes individual bit planes from different color channels. This forensic tool helps identify hidden patterns and artifacts in image data that may indicate manipulation. Different bit planes can reveal inconsistencies in image processing or editing." | |
) | |
# with gr.Tab("EXIF Full Dump"): | |
# gr.Interface( | |
# fn=exif_full_dump, | |
# inputs=gr.Image(type="pil"), | |
# outputs=gr.JSON(), | |
# description="Extract all EXIF metadata from the uploaded image." | |
# ) | |
# --- MCP-Ready Launch --- | |
if __name__ == "__main__": | |
demo.launch(mcp_server=True) |