LPX
fix: ensure Hugging Face API token is used for dataset repository initialization
f69af75
import os
import base64
import json
import io
import datetime
from PIL import Image
import logging
from huggingface_hub import HfApi, CommitOperationAdd # Keep HfApi for repo creation, but remove CommitOperationAdd for direct upload
import numpy as np
logger = logging.getLogger(__name__)
HF_DATASET_NAME = "aiwithoutborders-xyz/degentic_rd0"
LOCAL_LOG_DIR = "./hf_inference_logs" # Define a local directory to store logs
# Custom JSON Encoder to handle numpy types
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.float32):
return float(obj)
return json.JSONEncoder.default(self, obj)
def _pil_to_base64(image: Image.Image) -> str:
"""Converts a PIL Image to a base64 string."""
# Explicitly check if the input is a PIL Image
if not isinstance(image, Image.Image):
raise TypeError(f"Expected a PIL Image, but received type: {type(image)}")
buffered = io.BytesIO()
# Ensure image is in RGB mode before saving as JPEG
if image.mode != 'RGB':
image = image.convert('RGB')
image.save(buffered, format="JPEG", quality=85)
return base64.b64encode(buffered.getvalue()).decode('utf-8')
# The initialize_dataset function will change significantly or be removed/simplified
# as we are no longer appending to a datasets.Dataset object directly in memory
def initialize_dataset_repo():
"""Initializes or ensures the Hugging Face dataset repository exists."""
api = HfApi(token=os.getenv("HF_TOKEN"))
try:
api.repo_info(repo_id=HF_DATASET_NAME, repo_type="dataset")
logger.info(f"Hugging Face dataset repository already exists: {HF_DATASET_NAME}")
except Exception:
logger.info(f"Creating new Hugging Face dataset repository: {HF_DATASET_NAME}")
api.create_repo(repo_id=HF_DATASET_NAME, repo_type="dataset", private=True)
return api # Return the API object for subsequent operations
def log_inference_data(
original_image: Image.Image,
inference_params: dict,
model_predictions: list[dict],
ensemble_output: dict,
forensic_images: list[Image.Image],
agent_monitoring_data: dict,
human_feedback: dict = None
):
"""Logs a single inference event by uploading a JSON file to the Hugging Face dataset repository."""
try:
api = initialize_dataset_repo() # Get or create the repository
original_image_b64 = _pil_to_base64(original_image)
forensic_images_b64 = []
for img_item in forensic_images:
if img_item is not None:
if not isinstance(img_item, Image.Image):
try:
img_item = Image.fromarray(img_item)
except Exception as e:
logger.error(f"Error converting forensic image to PIL for base64 encoding: {e}")
continue
forensic_images_b64.append(_pil_to_base64(img_item))
new_entry = {
"timestamp": datetime.datetime.now().isoformat(),
"image": original_image_b64,
"inference_request": inference_params,
"model_predictions": model_predictions,
"ensemble_output": ensemble_output,
"forensic_outputs": forensic_images_b64,
"agent_monitoring_data": agent_monitoring_data,
"human_feedback": human_feedback if human_feedback is not None else {}
}
# Define a unique path for the new log file within the local directory
os.makedirs(LOCAL_LOG_DIR, exist_ok=True) # Ensure the local directory exists
timestamp_str = datetime.datetime.now().strftime("%Y%m%d%H%M%S%f")
log_file_path = os.path.join(LOCAL_LOG_DIR, f"log_{timestamp_str}.json")
# Serialize the new entry to a JSON file using the custom encoder
with open(log_file_path, 'w', encoding='utf-8') as f:
json.dump(new_entry, f, cls=NumpyEncoder, indent=2)
logger.info(f"Inference data logged successfully to local file: {log_file_path}")
except Exception as e:
logger.error(f"Failed to log inference data to local file: {e}")