|
import os |
|
import base64 |
|
import json |
|
import io |
|
import datetime |
|
from PIL import Image |
|
import logging |
|
from huggingface_hub import HfApi, CommitOperationAdd |
|
import numpy as np |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
HF_DATASET_NAME = "aiwithoutborders-xyz/degentic_rd0" |
|
LOCAL_LOG_DIR = "./hf_inference_logs" |
|
|
|
|
|
class NumpyEncoder(json.JSONEncoder): |
|
def default(self, obj): |
|
if isinstance(obj, np.float32): |
|
return float(obj) |
|
return json.JSONEncoder.default(self, obj) |
|
|
|
def _pil_to_base64(image: Image.Image) -> str: |
|
"""Converts a PIL Image to a base64 string.""" |
|
|
|
if not isinstance(image, Image.Image): |
|
raise TypeError(f"Expected a PIL Image, but received type: {type(image)}") |
|
|
|
buffered = io.BytesIO() |
|
|
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
image.save(buffered, format="JPEG", quality=85) |
|
return base64.b64encode(buffered.getvalue()).decode('utf-8') |
|
|
|
|
|
|
|
def initialize_dataset_repo(): |
|
"""Initializes or ensures the Hugging Face dataset repository exists.""" |
|
api = HfApi(token=os.getenv("HF_TOKEN")) |
|
try: |
|
api.repo_info(repo_id=HF_DATASET_NAME, repo_type="dataset") |
|
logger.info(f"Hugging Face dataset repository already exists: {HF_DATASET_NAME}") |
|
except Exception: |
|
logger.info(f"Creating new Hugging Face dataset repository: {HF_DATASET_NAME}") |
|
api.create_repo(repo_id=HF_DATASET_NAME, repo_type="dataset", private=True) |
|
return api |
|
|
|
def log_inference_data( |
|
original_image: Image.Image, |
|
inference_params: dict, |
|
model_predictions: list[dict], |
|
ensemble_output: dict, |
|
forensic_images: list[Image.Image], |
|
agent_monitoring_data: dict, |
|
human_feedback: dict = None |
|
): |
|
"""Logs a single inference event by uploading a JSON file to the Hugging Face dataset repository.""" |
|
try: |
|
api = initialize_dataset_repo() |
|
|
|
original_image_b64 = _pil_to_base64(original_image) |
|
|
|
forensic_images_b64 = [] |
|
for img_item in forensic_images: |
|
if img_item is not None: |
|
if not isinstance(img_item, Image.Image): |
|
try: |
|
img_item = Image.fromarray(img_item) |
|
except Exception as e: |
|
logger.error(f"Error converting forensic image to PIL for base64 encoding: {e}") |
|
continue |
|
forensic_images_b64.append(_pil_to_base64(img_item)) |
|
|
|
new_entry = { |
|
"timestamp": datetime.datetime.now().isoformat(), |
|
"image": original_image_b64, |
|
"inference_request": inference_params, |
|
"model_predictions": model_predictions, |
|
"ensemble_output": ensemble_output, |
|
"forensic_outputs": forensic_images_b64, |
|
"agent_monitoring_data": agent_monitoring_data, |
|
"human_feedback": human_feedback if human_feedback is not None else {} |
|
} |
|
|
|
|
|
os.makedirs(LOCAL_LOG_DIR, exist_ok=True) |
|
timestamp_str = datetime.datetime.now().strftime("%Y%m%d%H%M%S%f") |
|
log_file_path = os.path.join(LOCAL_LOG_DIR, f"log_{timestamp_str}.json") |
|
|
|
|
|
with open(log_file_path, 'w', encoding='utf-8') as f: |
|
json.dump(new_entry, f, cls=NumpyEncoder, indent=2) |
|
|
|
logger.info(f"Inference data logged successfully to local file: {log_file_path}") |
|
|
|
except Exception as e: |
|
logger.error(f"Failed to log inference data to local file: {e}") |