Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
# from transformers import AutoBackbone, AutoModelForImageClassification, AutoImageProcessor, Swinv2ForImageClassification
|
3 |
-
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification
|
4 |
from torchvision import transforms
|
5 |
|
6 |
# model = AutoModelForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
@@ -17,6 +17,8 @@ def predict_image(img):
|
|
17 |
img = transforms.ToPILImage()(img)
|
18 |
img = transforms.Resize((256,256))(img)
|
19 |
prediction=clf.predict(img)
|
|
|
|
|
20 |
return {class_names[i]: float(prediction[i]["score"]) for i in range(2)}
|
21 |
|
22 |
image = gr.Image(label="Image to Analyze", sources=['upload'])
|
|
|
1 |
import gradio as gr
|
2 |
# from transformers import AutoBackbone, AutoModelForImageClassification, AutoImageProcessor, Swinv2ForImageClassification
|
3 |
+
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification
|
4 |
from torchvision import transforms
|
5 |
|
6 |
# model = AutoModelForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
|
|
17 |
img = transforms.ToPILImage()(img)
|
18 |
img = transforms.Resize((256,256))(img)
|
19 |
prediction=clf.predict(img)
|
20 |
+
print(clf(image))
|
21 |
+
print(model.config.id2label[predicted_label])
|
22 |
return {class_names[i]: float(prediction[i]["score"]) for i in range(2)}
|
23 |
|
24 |
image = gr.Image(label="Image to Analyze", sources=['upload'])
|