Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ import pandas as pd
|
|
8 |
import warnings
|
9 |
import math
|
10 |
import numpy as np
|
|
|
|
|
11 |
|
12 |
# Suppress warnings
|
13 |
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
|
@@ -47,6 +49,10 @@ def softmax(vector):
|
|
47 |
|
48 |
@spaces.GPU(duration=10)
|
49 |
def predict_image(img, confidence_threshold):
|
|
|
|
|
|
|
|
|
50 |
# Ensure the image is a PIL Image
|
51 |
if not isinstance(img, Image.Image):
|
52 |
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
@@ -72,9 +78,9 @@ def predict_image(img, confidence_threshold):
|
|
72 |
|
73 |
# Check if either class meets the confidence threshold
|
74 |
if result_1['artificial'] >= confidence_threshold:
|
75 |
-
label_1 = f"
|
76 |
elif result_1['real'] >= confidence_threshold:
|
77 |
-
label_1 = f"
|
78 |
else:
|
79 |
label_1 = "Uncertain Classification"
|
80 |
except Exception as e:
|
@@ -92,9 +98,9 @@ def predict_image(img, confidence_threshold):
|
|
92 |
|
93 |
# Check if either class meets the confidence threshold
|
94 |
if result_2['AI Image'] >= confidence_threshold:
|
95 |
-
label_2 = f"
|
96 |
elif result_2['Real Image'] >= confidence_threshold:
|
97 |
-
label_2 = f"
|
98 |
else:
|
99 |
label_2 = "Uncertain Classification"
|
100 |
except Exception as e:
|
@@ -120,9 +126,9 @@ def predict_image(img, confidence_threshold):
|
|
120 |
|
121 |
# Check if either class meets the confidence threshold
|
122 |
if result_3['AI'] >= confidence_threshold:
|
123 |
-
label_3 = f"
|
124 |
elif result_3['Real'] >= confidence_threshold:
|
125 |
-
label_3 = f"
|
126 |
else:
|
127 |
label_3 = "Uncertain Classification"
|
128 |
except Exception as e:
|
@@ -148,9 +154,9 @@ def predict_image(img, confidence_threshold):
|
|
148 |
|
149 |
# Check if either class meets the confidence threshold
|
150 |
if result_4['AI'] >= confidence_threshold:
|
151 |
-
label_4 = f"
|
152 |
elif result_4['Real'] >= confidence_threshold:
|
153 |
-
label_4 = f"
|
154 |
else:
|
155 |
label_4 = "Uncertain Classification"
|
156 |
except Exception as e:
|
@@ -168,10 +174,10 @@ def predict_image(img, confidence_threshold):
|
|
168 |
|
169 |
# Combine results
|
170 |
combined_results = {
|
171 |
-
"SwinV2": label_1,
|
172 |
-
"AI-vs-Real
|
173 |
-
"
|
174 |
-
"
|
175 |
# "ALSv": label_5
|
176 |
}
|
177 |
|
|
|
8 |
import warnings
|
9 |
import math
|
10 |
import numpy as np
|
11 |
+
from utils import call_inference
|
12 |
+
|
13 |
|
14 |
# Suppress warnings
|
15 |
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
|
|
|
49 |
|
50 |
@spaces.GPU(duration=10)
|
51 |
def predict_image(img, confidence_threshold):
|
52 |
+
|
53 |
+
response5_raw = call_inference(img)
|
54 |
+
response5 = response5_raw.json()
|
55 |
+
|
56 |
# Ensure the image is a PIL Image
|
57 |
if not isinstance(img, Image.Image):
|
58 |
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
|
|
78 |
|
79 |
# Check if either class meets the confidence threshold
|
80 |
if result_1['artificial'] >= confidence_threshold:
|
81 |
+
label_1 = f"AI, Confidence: {result_1['artificial']:.4f}"
|
82 |
elif result_1['real'] >= confidence_threshold:
|
83 |
+
label_1 = f"Real, Confidence: {result_1['real']:.4f}"
|
84 |
else:
|
85 |
label_1 = "Uncertain Classification"
|
86 |
except Exception as e:
|
|
|
98 |
|
99 |
# Check if either class meets the confidence threshold
|
100 |
if result_2['AI Image'] >= confidence_threshold:
|
101 |
+
label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}"
|
102 |
elif result_2['Real Image'] >= confidence_threshold:
|
103 |
+
label_2 = f"Real, Confidence: {result_2['Real Image']:.4f}"
|
104 |
else:
|
105 |
label_2 = "Uncertain Classification"
|
106 |
except Exception as e:
|
|
|
126 |
|
127 |
# Check if either class meets the confidence threshold
|
128 |
if result_3['AI'] >= confidence_threshold:
|
129 |
+
label_3 = f"AI, Confidence: {result_3['AI']:.4f}"
|
130 |
elif result_3['Real'] >= confidence_threshold:
|
131 |
+
label_3 = f"Real, Confidence: {result_3['Real']:.4f}"
|
132 |
else:
|
133 |
label_3 = "Uncertain Classification"
|
134 |
except Exception as e:
|
|
|
154 |
|
155 |
# Check if either class meets the confidence threshold
|
156 |
if result_4['AI'] >= confidence_threshold:
|
157 |
+
label_4 = f"AI, Confidence: {result_4['AI']:.4f}"
|
158 |
elif result_4['Real'] >= confidence_threshold:
|
159 |
+
label_4 = f"Real, Confidence: {result_4['Real']:.4f}"
|
160 |
else:
|
161 |
label_4 = "Uncertain Classification"
|
162 |
except Exception as e:
|
|
|
174 |
|
175 |
# Combine results
|
176 |
combined_results = {
|
177 |
+
"SwinV2/detect": label_1,
|
178 |
+
"ViT/AI-vs-Real": label_2,
|
179 |
+
"Swin/SDXL": label_3,
|
180 |
+
"Swin/SDXL-FLUX": label_4,
|
181 |
# "ALSv": label_5
|
182 |
}
|
183 |
|