LPX
commited on
Commit
·
237292f
1
Parent(s):
cb175d5
✨ feat(image processing): add MinMax pre-processing to image pipeline
Browse files- add support【】for MinMax pre-processing in predict_image_with_html
- add MinMax processing to ela_images output
- import minmax_preprocess function from utils.minmax.py
- adjust gradient processing intensity value
✅ test(gradient): test gradient processing
- test default behavior of gradient processing
- ensure correct default values for intensity and blue_mode
- validate intensity adjustment
- app.py +3 -1
- utils/gradient.py +1 -1
- utils/minmax.py +81 -0
app.py
CHANGED
@@ -9,6 +9,7 @@ import io
|
|
9 |
import logging
|
10 |
from utils.utils import softmax, augment_image, convert_pil_to_bytes, ELA
|
11 |
from utils.gradient import gradient_processing
|
|
|
12 |
|
13 |
|
14 |
# Configure logging
|
@@ -232,6 +233,7 @@ def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_d
|
|
232 |
img_pil, results = predict_image(img_pil, confidence_threshold)
|
233 |
|
234 |
gradient_image = gradient_processing(img_pil) # Added gradient processing
|
|
|
235 |
|
236 |
# Generate ELA images with different presets
|
237 |
ela_img_1 = ELA(img_pil, scale=100, alpha=0.66)
|
@@ -239,7 +241,7 @@ def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_d
|
|
239 |
ela_img_3 = ELA(img_pil, scale=50, alpha=0.5)
|
240 |
ela_img_4 = ELA(img_pil, scale=25, alpha=0.85)
|
241 |
|
242 |
-
ela_images = [ela_img_1, ela_img_2, ela_img_3, ela_img_4, gradient_image]
|
243 |
|
244 |
html_content = generate_results_html(results)
|
245 |
return img_pil, ela_images, html_content
|
|
|
9 |
import logging
|
10 |
from utils.utils import softmax, augment_image, convert_pil_to_bytes, ELA
|
11 |
from utils.gradient import gradient_processing
|
12 |
+
from utils.minmax import preprocess as minmax_preprocess
|
13 |
|
14 |
|
15 |
# Configure logging
|
|
|
233 |
img_pil, results = predict_image(img_pil, confidence_threshold)
|
234 |
|
235 |
gradient_image = gradient_processing(img_pil) # Added gradient processing
|
236 |
+
minmax_image = minmax_preprocess(img_pil) # Added MinMax processing
|
237 |
|
238 |
# Generate ELA images with different presets
|
239 |
ela_img_1 = ELA(img_pil, scale=100, alpha=0.66)
|
|
|
241 |
ela_img_3 = ELA(img_pil, scale=50, alpha=0.5)
|
242 |
ela_img_4 = ELA(img_pil, scale=25, alpha=0.85)
|
243 |
|
244 |
+
ela_images = [ela_img_1, ela_img_2, ela_img_3, ela_img_4, gradient_image, minmax_image]
|
245 |
|
246 |
html_content = generate_results_html(results)
|
247 |
return img_pil, ela_images, html_content
|
utils/gradient.py
CHANGED
@@ -18,7 +18,7 @@ def create_lut(intensity, gamma):
|
|
18 |
lut[i, 0, 2] = min(255, max(0, i + intensity))
|
19 |
return lut
|
20 |
|
21 |
-
def gradient_processing(image, intensity=
|
22 |
image = np.array(image)
|
23 |
dx, dy = cv.spatialGradient(cv.cvtColor(image, cv.COLOR_BGR2GRAY))
|
24 |
intensity = int(intensity / 100 * 127)
|
|
|
18 |
lut[i, 0, 2] = min(255, max(0, i + intensity))
|
19 |
return lut
|
20 |
|
21 |
+
def gradient_processing(image, intensity=90, blue_mode="Abs", invert=False, equalize=False):
|
22 |
image = np.array(image)
|
23 |
dx, dy = cv.spatialGradient(cv.cvtColor(image, cv.COLOR_BGR2GRAY))
|
24 |
intensity = int(intensity / 100 * 127)
|
utils/minmax.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2 as cv
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
def norm_mat(mat):
|
6 |
+
return cv.normalize(mat, None, 0, 255, cv.NORM_MINMAX).astype(np.uint8)
|
7 |
+
|
8 |
+
def minmax_dev(patch, mask):
|
9 |
+
c = patch[1, 1]
|
10 |
+
minimum, maximum, _, _ = cv.minMaxLoc(patch, mask)
|
11 |
+
if c < minimum:
|
12 |
+
return -1
|
13 |
+
if c > maximum:
|
14 |
+
return +1
|
15 |
+
return 0
|
16 |
+
|
17 |
+
def blk_filter(img, radius):
|
18 |
+
result = np.zeros_like(img, np.float32)
|
19 |
+
rows, cols = result.shape
|
20 |
+
block = 2 * radius + 1
|
21 |
+
for i in range(radius, rows, block):
|
22 |
+
for j in range(radius, cols, block):
|
23 |
+
result[
|
24 |
+
i - radius : i + radius + 1, j - radius : j + radius + 1
|
25 |
+
] = np.std(
|
26 |
+
img[i - radius : i + radius + 1, j - radius : j + radius + 1]
|
27 |
+
)
|
28 |
+
return cv.normalize(result, None, 0, 127, cv.NORM_MINMAX, cv.CV_8UC1)
|
29 |
+
|
30 |
+
|
31 |
+
def preprocess(image, channel=0, radius=0):
|
32 |
+
if channel == 0:
|
33 |
+
img = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
|
34 |
+
elif channel == 4:
|
35 |
+
b, g, r = cv.split(image.astype(np.float64))
|
36 |
+
img = cv.sqrt(cv.pow(b, 2) + cv.pow(g, 2) + cv.pow(r, 2))
|
37 |
+
else:
|
38 |
+
img = image[:, :, 3 - channel]
|
39 |
+
kernel = 3
|
40 |
+
border = kernel // 2
|
41 |
+
shape = (img.shape[0] - kernel + 1, img.shape[1] - kernel + 1, kernel, kernel)
|
42 |
+
strides = 2 * img.strides
|
43 |
+
patches = np.lib.stride_tricks.as_strided(img, shape=shape, strides=strides)
|
44 |
+
patches = patches.reshape((-1, kernel, kernel))
|
45 |
+
mask = np.full((kernel, kernel), 255, dtype=np.uint8)
|
46 |
+
mask[border, border] = 0
|
47 |
+
blocks = [0] * shape[0] * shape[1]
|
48 |
+
for i, patch in enumerate(patches):
|
49 |
+
blocks[i] = minmax_dev(patch, mask)
|
50 |
+
output = np.array(blocks).reshape(shape[:-2])
|
51 |
+
output = cv.copyMakeBorder(
|
52 |
+
output, border, border, border, border, cv.BORDER_CONSTANT
|
53 |
+
)
|
54 |
+
low = output == -1
|
55 |
+
high = output == +1
|
56 |
+
minmax = np.zeros_like(image)
|
57 |
+
if radius > 0:
|
58 |
+
radius += 3
|
59 |
+
low = blk_filter(low, radius)
|
60 |
+
high = blk_filter(high, radius)
|
61 |
+
if channel <= 2:
|
62 |
+
minmax[:, :, 2 - channel] = low
|
63 |
+
minmax[:, :, 2 - channel] += high
|
64 |
+
else:
|
65 |
+
minmax = np.repeat(low[:, :, np.newaxis], 3, axis=2)
|
66 |
+
minmax += np.repeat(high[:, :, np.newaxis], 3, axis=2)
|
67 |
+
minmax = norm_mat(minmax)
|
68 |
+
else:
|
69 |
+
if channel == 0:
|
70 |
+
minmax[low] = [0, 0, 255]
|
71 |
+
minmax[high] = [0, 0, 255]
|
72 |
+
elif channel == 1:
|
73 |
+
minmax[low] = [0, 255, 0]
|
74 |
+
minmax[high] = [0, 255, 0]
|
75 |
+
elif channel == 2:
|
76 |
+
minmax[low] = [255, 0, 0]
|
77 |
+
minmax[high] = [255, 0, 0]
|
78 |
+
elif channel == 3:
|
79 |
+
minmax[low] = [255, 255, 255]
|
80 |
+
minmax[high] = [255, 255, 255]
|
81 |
+
return Image.fromarray(minmax)
|