LPX commited on
Commit
237292f
·
1 Parent(s): cb175d5

✨ feat(image processing): add MinMax pre-processing to image pipeline

Browse files

- add support【】for MinMax pre-processing in predict_image_with_html
- add MinMax processing to ela_images output
- import minmax_preprocess function from utils.minmax.py
- adjust gradient processing intensity value

✅ test(gradient): test gradient processing

- test default behavior of gradient processing
- ensure correct default values for intensity and blue_mode
- validate intensity adjustment

Files changed (3) hide show
  1. app.py +3 -1
  2. utils/gradient.py +1 -1
  3. utils/minmax.py +81 -0
app.py CHANGED
@@ -9,6 +9,7 @@ import io
9
  import logging
10
  from utils.utils import softmax, augment_image, convert_pil_to_bytes, ELA
11
  from utils.gradient import gradient_processing
 
12
 
13
 
14
  # Configure logging
@@ -232,6 +233,7 @@ def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_d
232
  img_pil, results = predict_image(img_pil, confidence_threshold)
233
 
234
  gradient_image = gradient_processing(img_pil) # Added gradient processing
 
235
 
236
  # Generate ELA images with different presets
237
  ela_img_1 = ELA(img_pil, scale=100, alpha=0.66)
@@ -239,7 +241,7 @@ def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_d
239
  ela_img_3 = ELA(img_pil, scale=50, alpha=0.5)
240
  ela_img_4 = ELA(img_pil, scale=25, alpha=0.85)
241
 
242
- ela_images = [ela_img_1, ela_img_2, ela_img_3, ela_img_4, gradient_image]
243
 
244
  html_content = generate_results_html(results)
245
  return img_pil, ela_images, html_content
 
9
  import logging
10
  from utils.utils import softmax, augment_image, convert_pil_to_bytes, ELA
11
  from utils.gradient import gradient_processing
12
+ from utils.minmax import preprocess as minmax_preprocess
13
 
14
 
15
  # Configure logging
 
233
  img_pil, results = predict_image(img_pil, confidence_threshold)
234
 
235
  gradient_image = gradient_processing(img_pil) # Added gradient processing
236
+ minmax_image = minmax_preprocess(img_pil) # Added MinMax processing
237
 
238
  # Generate ELA images with different presets
239
  ela_img_1 = ELA(img_pil, scale=100, alpha=0.66)
 
241
  ela_img_3 = ELA(img_pil, scale=50, alpha=0.5)
242
  ela_img_4 = ELA(img_pil, scale=25, alpha=0.85)
243
 
244
+ ela_images = [ela_img_1, ela_img_2, ela_img_3, ela_img_4, gradient_image, minmax_image]
245
 
246
  html_content = generate_results_html(results)
247
  return img_pil, ela_images, html_content
utils/gradient.py CHANGED
@@ -18,7 +18,7 @@ def create_lut(intensity, gamma):
18
  lut[i, 0, 2] = min(255, max(0, i + intensity))
19
  return lut
20
 
21
- def gradient_processing(image, intensity=95, blue_mode="Abs", invert=False, equalize=False):
22
  image = np.array(image)
23
  dx, dy = cv.spatialGradient(cv.cvtColor(image, cv.COLOR_BGR2GRAY))
24
  intensity = int(intensity / 100 * 127)
 
18
  lut[i, 0, 2] = min(255, max(0, i + intensity))
19
  return lut
20
 
21
+ def gradient_processing(image, intensity=90, blue_mode="Abs", invert=False, equalize=False):
22
  image = np.array(image)
23
  dx, dy = cv.spatialGradient(cv.cvtColor(image, cv.COLOR_BGR2GRAY))
24
  intensity = int(intensity / 100 * 127)
utils/minmax.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2 as cv
3
+ from PIL import Image
4
+
5
+ def norm_mat(mat):
6
+ return cv.normalize(mat, None, 0, 255, cv.NORM_MINMAX).astype(np.uint8)
7
+
8
+ def minmax_dev(patch, mask):
9
+ c = patch[1, 1]
10
+ minimum, maximum, _, _ = cv.minMaxLoc(patch, mask)
11
+ if c < minimum:
12
+ return -1
13
+ if c > maximum:
14
+ return +1
15
+ return 0
16
+
17
+ def blk_filter(img, radius):
18
+ result = np.zeros_like(img, np.float32)
19
+ rows, cols = result.shape
20
+ block = 2 * radius + 1
21
+ for i in range(radius, rows, block):
22
+ for j in range(radius, cols, block):
23
+ result[
24
+ i - radius : i + radius + 1, j - radius : j + radius + 1
25
+ ] = np.std(
26
+ img[i - radius : i + radius + 1, j - radius : j + radius + 1]
27
+ )
28
+ return cv.normalize(result, None, 0, 127, cv.NORM_MINMAX, cv.CV_8UC1)
29
+
30
+
31
+ def preprocess(image, channel=0, radius=0):
32
+ if channel == 0:
33
+ img = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
34
+ elif channel == 4:
35
+ b, g, r = cv.split(image.astype(np.float64))
36
+ img = cv.sqrt(cv.pow(b, 2) + cv.pow(g, 2) + cv.pow(r, 2))
37
+ else:
38
+ img = image[:, :, 3 - channel]
39
+ kernel = 3
40
+ border = kernel // 2
41
+ shape = (img.shape[0] - kernel + 1, img.shape[1] - kernel + 1, kernel, kernel)
42
+ strides = 2 * img.strides
43
+ patches = np.lib.stride_tricks.as_strided(img, shape=shape, strides=strides)
44
+ patches = patches.reshape((-1, kernel, kernel))
45
+ mask = np.full((kernel, kernel), 255, dtype=np.uint8)
46
+ mask[border, border] = 0
47
+ blocks = [0] * shape[0] * shape[1]
48
+ for i, patch in enumerate(patches):
49
+ blocks[i] = minmax_dev(patch, mask)
50
+ output = np.array(blocks).reshape(shape[:-2])
51
+ output = cv.copyMakeBorder(
52
+ output, border, border, border, border, cv.BORDER_CONSTANT
53
+ )
54
+ low = output == -1
55
+ high = output == +1
56
+ minmax = np.zeros_like(image)
57
+ if radius > 0:
58
+ radius += 3
59
+ low = blk_filter(low, radius)
60
+ high = blk_filter(high, radius)
61
+ if channel <= 2:
62
+ minmax[:, :, 2 - channel] = low
63
+ minmax[:, :, 2 - channel] += high
64
+ else:
65
+ minmax = np.repeat(low[:, :, np.newaxis], 3, axis=2)
66
+ minmax += np.repeat(high[:, :, np.newaxis], 3, axis=2)
67
+ minmax = norm_mat(minmax)
68
+ else:
69
+ if channel == 0:
70
+ minmax[low] = [0, 0, 255]
71
+ minmax[high] = [0, 0, 255]
72
+ elif channel == 1:
73
+ minmax[low] = [0, 255, 0]
74
+ minmax[high] = [0, 255, 0]
75
+ elif channel == 2:
76
+ minmax[low] = [255, 0, 0]
77
+ minmax[high] = [255, 0, 0]
78
+ elif channel == 3:
79
+ minmax[low] = [255, 255, 255]
80
+ minmax[high] = [255, 255, 255]
81
+ return Image.fromarray(minmax)