Update app.py
Browse files
app.py
CHANGED
@@ -64,7 +64,7 @@ def predict_image(img, confidence_threshold):
|
|
64 |
try:
|
65 |
prediction_1 = clf_1(img_pil)
|
66 |
result_1 = {pred['label']: pred['score'] for pred in prediction_1}
|
67 |
-
|
68 |
# Ensure the result dictionary contains all class names
|
69 |
for class_name in class_names_1:
|
70 |
if class_name not in result_1:
|
@@ -84,7 +84,7 @@ def predict_image(img, confidence_threshold):
|
|
84 |
try:
|
85 |
prediction_2 = clf_2(img_pil)
|
86 |
result_2 = {pred['label']: pred['score'] for pred in prediction_2}
|
87 |
-
|
88 |
# Ensure the result dictionary contains all class names
|
89 |
for class_name in class_names_2:
|
90 |
if class_name not in result_2:
|
@@ -107,12 +107,12 @@ def predict_image(img, confidence_threshold):
|
|
107 |
outputs_3 = model_3(**inputs_3)
|
108 |
logits_3 = outputs_3.logits
|
109 |
probabilities_3 = softmax(logits_3.cpu().numpy()[0])
|
110 |
-
|
111 |
result_3 = {
|
112 |
labels_3[0]: float(probabilities_3[0]), # AI
|
113 |
labels_3[1]: float(probabilities_3[1]) # Real
|
114 |
}
|
115 |
-
|
116 |
# Ensure the result dictionary contains all class names
|
117 |
for class_name in labels_3:
|
118 |
if class_name not in result_3:
|
@@ -140,7 +140,7 @@ def predict_image(img, confidence_threshold):
|
|
140 |
labels_4[0]: float(probabilities_4[0]), # AI
|
141 |
labels_4[1]: float(probabilities_4[1]) # Real
|
142 |
}
|
143 |
-
|
144 |
# Ensure the result dictionary contains all class names
|
145 |
for class_name in labels_4:
|
146 |
if class_name not in result_4:
|
|
|
64 |
try:
|
65 |
prediction_1 = clf_1(img_pil)
|
66 |
result_1 = {pred['label']: pred['score'] for pred in prediction_1}
|
67 |
+
print(result_1)
|
68 |
# Ensure the result dictionary contains all class names
|
69 |
for class_name in class_names_1:
|
70 |
if class_name not in result_1:
|
|
|
84 |
try:
|
85 |
prediction_2 = clf_2(img_pil)
|
86 |
result_2 = {pred['label']: pred['score'] for pred in prediction_2}
|
87 |
+
print(result_2)
|
88 |
# Ensure the result dictionary contains all class names
|
89 |
for class_name in class_names_2:
|
90 |
if class_name not in result_2:
|
|
|
107 |
outputs_3 = model_3(**inputs_3)
|
108 |
logits_3 = outputs_3.logits
|
109 |
probabilities_3 = softmax(logits_3.cpu().numpy()[0])
|
110 |
+
|
111 |
result_3 = {
|
112 |
labels_3[0]: float(probabilities_3[0]), # AI
|
113 |
labels_3[1]: float(probabilities_3[1]) # Real
|
114 |
}
|
115 |
+
print(result_3)
|
116 |
# Ensure the result dictionary contains all class names
|
117 |
for class_name in labels_3:
|
118 |
if class_name not in result_3:
|
|
|
140 |
labels_4[0]: float(probabilities_4[0]), # AI
|
141 |
labels_4[1]: float(probabilities_4[1]) # Real
|
142 |
}
|
143 |
+
print(result_4)
|
144 |
# Ensure the result dictionary contains all class names
|
145 |
for class_name in labels_4:
|
146 |
if class_name not in result_4:
|