LPX commited on
Commit
33581d9
·
1 Parent(s): 24fcbcc

✨ feat(ui): add sharpen and noise augmentation

Browse files

- add new sharpen sliders for image processing
- add new noise sliders for image processing

🐛 fix(utils): correct augmentation method assignment

- correctly set default augmentations methods
- allow Dynamic settings for sharpen

📝 docs(ui): update Image UI with new Augmnents

- add new augment methods UI
- current weights of image slider
- display of image prediction timestamp

Files changed (2) hide show
  1. app.py +10 -4
  2. utils/utils.py +3 -3
app.py CHANGED
@@ -216,21 +216,27 @@ with gr.Blocks() as iface:
216
  with gr.Column(scale=1):
217
  image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
218
  with gr.Accordion("Settings", open=False, elem_id="settings_accordion"):
219
- confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
220
  augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods")
221
  rotate_slider = gr.Slider(0, 360, value=0, step=1, label="Rotate Degrees", visible=False)
222
- inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider]
 
 
 
223
  predict_button = gr.Button("Predict")
 
 
224
  with gr.Column(scale=2):
225
  with gr.Accordion("Project OpenSight - Model Evaluations & Playground", open=False, elem_id="project_accordion"):
226
  gr.Markdown("## OpenSight is a SOTA gen. image detection model, in pre-release prep.\n\nThis HF Space is a temporary home for us and the public to evaluate the shortcomings of current open source models.\n\n<-- Feel free to play around by starting with an image as we prepare our formal announcement.")
227
- image_output = gr.Image(label="Processed Image", visible=False)
228
  # Custom HTML component to display results in 5 columns
229
  results_html = gr.HTML(label="Model Predictions")
230
  outputs = [image_output, results_html]
231
 
 
232
  augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider])
233
-
 
 
234
  predict_button.click(
235
  fn=predict_image_with_html,
236
  inputs=inputs,
 
216
  with gr.Column(scale=1):
217
  image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
218
  with gr.Accordion("Settings", open=False, elem_id="settings_accordion"):
 
219
  augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods")
220
  rotate_slider = gr.Slider(0, 360, value=0, step=1, label="Rotate Degrees", visible=False)
221
+ noise_slider = gr.Slider(0, 100, value=0, step=1, label="Noise Level", visible=False)
222
+ sharpen_slider = gr.Slider(0, 100, value=1, step=1, label="Sharpen Strength", visible=False)
223
+ confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
224
+ inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider]
225
  predict_button = gr.Button("Predict")
226
+ image_output = gr.Image(label="Processed Image", visible=True)
227
+
228
  with gr.Column(scale=2):
229
  with gr.Accordion("Project OpenSight - Model Evaluations & Playground", open=False, elem_id="project_accordion"):
230
  gr.Markdown("## OpenSight is a SOTA gen. image detection model, in pre-release prep.\n\nThis HF Space is a temporary home for us and the public to evaluate the shortcomings of current open source models.\n\n<-- Feel free to play around by starting with an image as we prepare our formal announcement.")
 
231
  # Custom HTML component to display results in 5 columns
232
  results_html = gr.HTML(label="Model Predictions")
233
  outputs = [image_output, results_html]
234
 
235
+ # Show/hide rotate slider based on selected augmentation method
236
  augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider])
237
+ augment_checkboxgroup.change(lambda methods: gr.update(visible="add_noise" in methods), inputs=[augment_checkboxgroup], outputs=[noise_slider])
238
+ augment_checkboxgroup.change(lambda methods: gr.update(visible="sharpen" in methods), inputs=[augment_checkboxgroup], outputs=[sharpen_slider])
239
+
240
  predict_button.click(
241
  fn=predict_image_with_html,
242
  inputs=inputs,
utils/utils.py CHANGED
@@ -7,15 +7,15 @@ def softmax(vector):
7
  e = np.exp(vector - np.max(vector)) # for numerical stability
8
  return e / e.sum()
9
 
10
- def augment_image(img_pil, methods, rotate_degrees=0):
11
  for method in methods:
12
  if method == "rotate":
13
  img_pil = img_pil.rotate(rotate_degrees)
14
  elif method == "add_noise":
15
- noise = np.random.normal(0, 25, img_pil.size[::-1] + (3,)).astype(np.uint8)
16
  img_pil = Image.fromarray(np.clip(np.array(img_pil) + noise, 0, 255).astype(np.uint8))
17
  elif method == "sharpen":
18
- img_pil = img_pil.filter(ImageFilter.SHARPEN)
19
  return img_pil, img_pil
20
 
21
  def convert_pil_to_bytes(image, format='JPEG'):
 
7
  e = np.exp(vector - np.max(vector)) # for numerical stability
8
  return e / e.sum()
9
 
10
+ def augment_image(img_pil, methods, rotate_degrees=0, noise_level=0, sharpen_strength=1):
11
  for method in methods:
12
  if method == "rotate":
13
  img_pil = img_pil.rotate(rotate_degrees)
14
  elif method == "add_noise":
15
+ noise = np.random.normal(0, noise_level, img_pil.size[::-1] + (3,)).astype(np.uint8)
16
  img_pil = Image.fromarray(np.clip(np.array(img_pil) + noise, 0, 255).astype(np.uint8))
17
  elif method == "sharpen":
18
+ img_pil = img_pil.filter(ImageFilter.UnsharpMask(radius=2, percent=sharpen_strength, threshold=3))
19
  return img_pil, img_pil
20
 
21
  def convert_pil_to_bytes(image, format='JPEG'):