LPX
commited on
Commit
·
3f08aad
1
Parent(s):
adbccc5
```
Browse files✨ feat(images): add column allocation on post processed images
- introduces the Granularity by breaking images into 4 columns on display
refactor(preprocess): update default values for channel and radius
- solves obscure errors
-runs performance impact tests
-directory dirs[]= dicts();
```
- app.py +1 -1
- utils/minmax.py +1 -1
app.py
CHANGED
@@ -269,7 +269,7 @@ with gr.Blocks() as iface:
|
|
269 |
with gr.Column(scale=2):
|
270 |
# Custom HTML component to display results in 5 columns
|
271 |
results_html = gr.HTML(label="Model Predictions")
|
272 |
-
forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True)
|
273 |
|
274 |
outputs = [image_output, forensics_gallery, results_html]
|
275 |
|
|
|
269 |
with gr.Column(scale=2):
|
270 |
# Custom HTML component to display results in 5 columns
|
271 |
results_html = gr.HTML(label="Model Predictions")
|
272 |
+
forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[4])
|
273 |
|
274 |
outputs = [image_output, forensics_gallery, results_html]
|
275 |
|
utils/minmax.py
CHANGED
@@ -27,7 +27,7 @@ def blk_filter(img, radius):
|
|
27 |
)
|
28 |
return cv.normalize(result, None, 0, 127, cv.NORM_MINMAX, cv.CV_8UC1)
|
29 |
|
30 |
-
def preprocess(image, channel=
|
31 |
if not isinstance(image, np.ndarray):
|
32 |
image = np.array(image) # Ensure image is a NumPy array
|
33 |
if channel == 0:
|
|
|
27 |
)
|
28 |
return cv.normalize(result, None, 0, 127, cv.NORM_MINMAX, cv.CV_8UC1)
|
29 |
|
30 |
+
def preprocess(image, channel=4, radius=1):
|
31 |
if not isinstance(image, np.ndarray):
|
32 |
image = np.array(image) # Ensure image is a NumPy array
|
33 |
if channel == 0:
|