LPX commited on
Commit
64eb1c4
·
1 Parent(s): a7d5234

☸ feat(preprocessing): add ELA image generation presets

Browse files

- added ability to generate ELA images with different presets for comparison
- updated UI to display multiple ELA images in a gallery

🎉Performance: change_ELA_image_generator_script

- modified ELA preprocessing step
- replace single ELA image generation by presets

Files changed (1) hide show
  1. app.py +12 -4
app.py CHANGED
@@ -222,15 +222,23 @@ def generate_results_html(results):
222
  """
223
  return html_content
224
 
 
225
  def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength):
226
  if augment_methods:
227
  img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength)
228
  else:
229
  img_pil = img
230
  img_pil, results = predict_image(img_pil, confidence_threshold)
231
- ela_img = ELA(img_pil) # Apply ELA to the image
 
 
 
 
 
 
 
232
  html_content = generate_results_html(results)
233
- return img_pil, ela_img, html_content
234
 
235
  with gr.Blocks() as iface:
236
  with gr.Tab("AI Image Detection"):
@@ -248,7 +256,7 @@ with gr.Blocks() as iface:
248
  inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider]
249
  predict_button = gr.Button("Predict")
250
  image_output = gr.Image(label="Processed Image", visible=True)
251
- ela_image_output = gr.Image(label="ELA Processed Image", visible=True)
252
 
253
 
254
  with gr.Column(scale=2):
@@ -256,7 +264,7 @@ with gr.Blocks() as iface:
256
  gr.Markdown("## OpenSight is a SOTA gen. image detection model, in pre-release prep.\n\nThis HF Space is a temporary home for us and the public to evaluate the shortcomings of current open source models.\n\n<-- Feel free to play around by starting with an image as we prepare our formal announcement.")
257
  # Custom HTML component to display results in 5 columns
258
  results_html = gr.HTML(label="Model Predictions")
259
- outputs = [image_output, ela_image_output, results_html]
260
 
261
  # Show/hide rotate slider based on selected augmentation method
262
  augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider])
 
222
  """
223
  return html_content
224
 
225
+
226
  def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength):
227
  if augment_methods:
228
  img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength)
229
  else:
230
  img_pil = img
231
  img_pil, results = predict_image(img_pil, confidence_threshold)
232
+
233
+ # Generate ELA images with different presets
234
+ ela_img_1 = ELA(img_pil, scale=77, alpha=0.66)
235
+ ela_img_2 = ELA(img_pil, scale=100, alpha=0.8)
236
+ ela_img_3 = ELA(img_pil, scale=50, alpha=0.5)
237
+
238
+ ela_images = [ela_img_1, ela_img_2, ela_img_3]
239
+
240
  html_content = generate_results_html(results)
241
+ return img_pil, ela_images, html_content
242
 
243
  with gr.Blocks() as iface:
244
  with gr.Tab("AI Image Detection"):
 
256
  inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider]
257
  predict_button = gr.Button("Predict")
258
  image_output = gr.Image(label="Processed Image", visible=True)
259
+ ela_gallery = gr.Gallery(label="ELA Processed Images", visible=True)
260
 
261
 
262
  with gr.Column(scale=2):
 
264
  gr.Markdown("## OpenSight is a SOTA gen. image detection model, in pre-release prep.\n\nThis HF Space is a temporary home for us and the public to evaluate the shortcomings of current open source models.\n\n<-- Feel free to play around by starting with an image as we prepare our formal announcement.")
265
  # Custom HTML component to display results in 5 columns
266
  results_html = gr.HTML(label="Model Predictions")
267
+ outputs = [image_output, ela_gallery, results_html]
268
 
269
  # Show/hide rotate slider based on selected augmentation method
270
  augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider])