Update app.py
Browse files
app.py
CHANGED
@@ -67,7 +67,7 @@ def predict_image(img, confidence_threshold):
|
|
67 |
try:
|
68 |
prediction_1 = clf_1(img_pil)
|
69 |
result_1 = {pred['label']: pred['score'] for pred in prediction_1}
|
70 |
-
result_1output = [1, result_1['
|
71 |
print(result_1output)
|
72 |
# Ensure the result dictionary contains all class names
|
73 |
for class_name in class_names_1:
|
@@ -87,7 +87,8 @@ def predict_image(img, confidence_threshold):
|
|
87 |
try:
|
88 |
prediction_2 = clf_2(img_pil)
|
89 |
result_2 = {pred['label']: pred['score'] for pred in prediction_2}
|
90 |
-
|
|
|
91 |
# Ensure the result dictionary contains all class names
|
92 |
for class_name in class_names_2:
|
93 |
if class_name not in result_2:
|
@@ -113,7 +114,8 @@ def predict_image(img, confidence_threshold):
|
|
113 |
labels_3[1]: float(probabilities_3[1]), # Real
|
114 |
labels_3[0]: float(probabilities_3[0]) # AI
|
115 |
}
|
116 |
-
|
|
|
117 |
# Ensure the result dictionary contains all class names
|
118 |
for class_name in labels_3:
|
119 |
if class_name not in result_3:
|
@@ -139,6 +141,7 @@ def predict_image(img, confidence_threshold):
|
|
139 |
labels_4[1]: float(probabilities_4[1]), # Real
|
140 |
labels_4[0]: float(probabilities_4[0]) # AI
|
141 |
}
|
|
|
142 |
print(result_4)
|
143 |
# Ensure the result dictionary contains all class names
|
144 |
for class_name in labels_4:
|
|
|
67 |
try:
|
68 |
prediction_1 = clf_1(img_pil)
|
69 |
result_1 = {pred['label']: pred['score'] for pred in prediction_1}
|
70 |
+
result_1output = [1, result_1['real'], result_1['artificial']]
|
71 |
print(result_1output)
|
72 |
# Ensure the result dictionary contains all class names
|
73 |
for class_name in class_names_1:
|
|
|
87 |
try:
|
88 |
prediction_2 = clf_2(img_pil)
|
89 |
result_2 = {pred['label']: pred['score'] for pred in prediction_2}
|
90 |
+
result_2output = [2, result_2['real'], result_2['artificial']]
|
91 |
+
print(result_2output)
|
92 |
# Ensure the result dictionary contains all class names
|
93 |
for class_name in class_names_2:
|
94 |
if class_name not in result_2:
|
|
|
114 |
labels_3[1]: float(probabilities_3[1]), # Real
|
115 |
labels_3[0]: float(probabilities_3[0]) # AI
|
116 |
}
|
117 |
+
result_3output = [3, float(probabilities_3[1]), float(probabilities_3[0])]
|
118 |
+
print(result_3output)
|
119 |
# Ensure the result dictionary contains all class names
|
120 |
for class_name in labels_3:
|
121 |
if class_name not in result_3:
|
|
|
141 |
labels_4[1]: float(probabilities_4[1]), # Real
|
142 |
labels_4[0]: float(probabilities_4[0]) # AI
|
143 |
}
|
144 |
+
result_4output = [4, float(probabilities_4[1]), float(probabilities_4[0])]
|
145 |
print(result_4)
|
146 |
# Ensure the result dictionary contains all class names
|
147 |
for class_name in labels_4:
|