♻️ refactor(app): code cleanup
Browse files- removed unused import: warnings
- added logging configuration
-【docs】modified logging level
-【refactor】renamed old logging config to current logging module
- optimized importance of models by introducing model hook configuration modes
-【docs】map classes of various models
-【feat】move and refactor models into reusable function
- modified logic containment
- reorganized and refactored prediction logic
- moved all augmentation related function to util
- clarified all parameters to be consistent
-【refactor】modified function name consistent
▪️️ feat(app): new model prediction logic with gpu decorator
-【refactor】added model index to output [[model id, model name, class a confidence, class b confidence, label] recommended output]
---·
+ refactor(file management): code cleanup
- remove previous unused paths
- moved function into utils
- app.py +72 -240
- utils/utils.py +25 -0
@@ -5,284 +5,116 @@ from torchvision import transforms
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import numpy as np
|
8 |
-
# from utils.goat import call_inference / announcement soon
|
9 |
import io
|
10 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
# Suppress warnings
|
13 |
-
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
|
14 |
|
15 |
# Ensure using GPU if available
|
16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
|
18 |
-
# Load the first model and processor
|
19 |
-
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True)
|
20 |
-
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
21 |
-
model_1 = model_1.to(device)
|
22 |
-
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
model_3
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
# Load
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
clf_5b = pipeline("image-classification", model=model_5b_path, device=device)
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
class_names_2 = ['AI Image', 'Real Image']
|
45 |
-
labels_3 = ['AI', 'Real']
|
46 |
-
labels_4 = ['AI', 'Real']
|
47 |
-
class_names_5 = ['Realism', 'Deepfake']
|
48 |
-
class_names_5b = ['Real', 'Deepfake']
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
return e / e.sum()
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
])
|
59 |
-
|
60 |
-
# Example augmentation: rotation
|
61 |
-
transform_rotate = transforms.Compose([
|
62 |
-
transforms.RandomRotation(degrees=(90, 90)) # Rotate the image by 90 degrees
|
63 |
-
])
|
64 |
-
|
65 |
-
augmented_img_flip = transform_flip(img_pil)
|
66 |
-
augmented_img_rotate = transform_rotate(img_pil)
|
67 |
-
|
68 |
-
return augmented_img_flip, augmented_img_rotate
|
69 |
|
70 |
-
|
71 |
-
# img_byte_arr = io.BytesIO()
|
72 |
-
# img_pil.save(img_byte_arr, format='PNG')
|
73 |
-
# img_byte_arr = img_byte_arr.getvalue()
|
74 |
-
# return img_byte_arr
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
@spaces.GPU(duration=10)
|
83 |
def predict_image(img, confidence_threshold):
|
84 |
-
# Ensure the image is a PIL Image
|
85 |
if not isinstance(img, Image.Image):
|
86 |
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
87 |
-
|
88 |
-
# Convert the image to RGB if not already
|
89 |
if img.mode != 'RGB':
|
90 |
img_pil = img.convert('RGB')
|
91 |
else:
|
92 |
img_pil = img
|
93 |
-
|
94 |
-
# Resize the image
|
95 |
img_pil = transforms.Resize((256, 256))(img_pil)
|
96 |
-
# Size 224 for vits models
|
97 |
img_pilvits = transforms.Resize((224, 224))(img_pil)
|
98 |
-
|
99 |
-
# Predict using the first model
|
100 |
-
try:
|
101 |
-
prediction_1 = clf_1(img_pil)
|
102 |
-
result_1 = {pred['label']: pred['score'] for pred in prediction_1}
|
103 |
-
result_1output = [1, 'SwinV2-base', result_1['real'], result_1['artificial']]
|
104 |
-
print(result_1output)
|
105 |
-
# Ensure the result dictionary contains all class names
|
106 |
-
for class_name in class_names_1:
|
107 |
-
if class_name not in result_1:
|
108 |
-
result_1[class_name] = 0.0
|
109 |
-
# Check if either class meets the confidence threshold
|
110 |
-
if result_1['artificial'] >= confidence_threshold:
|
111 |
-
label_1 = f"AI, Confidence: {result_1['artificial']:.4f}"
|
112 |
-
result_1output += ['AI']
|
113 |
-
elif result_1['real'] >= confidence_threshold:
|
114 |
-
label_1 = f"Real, Confidence: {result_1['real']:.4f}"
|
115 |
-
result_1output += ['REAL']
|
116 |
-
else:
|
117 |
-
label_1 = "Uncertain Classification"
|
118 |
-
result_1output += ['UNCERTAIN']
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
result_2 = {pred['label']: pred['score'] for pred in prediction_2}
|
127 |
-
result_2output = [2, 'ViT-base Classifer', result_2['Real Image'], result_2['AI Image']]
|
128 |
-
print(result_2output)
|
129 |
-
# Ensure the result dictionary contains all class names
|
130 |
-
for class_name in class_names_2:
|
131 |
-
if class_name not in result_2:
|
132 |
-
result_2[class_name] = 0.0
|
133 |
-
# Check if either class meets the confidence threshold
|
134 |
-
if result_2['AI Image'] >= confidence_threshold:
|
135 |
-
label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}"
|
136 |
-
result_2output += ['AI']
|
137 |
-
elif result_2['Real Image'] >= confidence_threshold:
|
138 |
-
label_2 = f"Real, Confidence: {result_2['Real Image']:.4f}"
|
139 |
-
result_2output += ['REAL']
|
140 |
-
else:
|
141 |
-
label_2 = "Uncertain Classification"
|
142 |
-
result_2output += ['UNCERTAIN']
|
143 |
-
except Exception as e:
|
144 |
-
label_2 = f"Error: {str(e)}"
|
145 |
-
|
146 |
-
# Predict using the third model with softmax
|
147 |
-
try:
|
148 |
-
inputs_3 = feature_extractor_3(img_pil, return_tensors="pt").to(device)
|
149 |
-
with torch.no_grad():
|
150 |
-
outputs_3 = model_3(**inputs_3)
|
151 |
-
logits_3 = outputs_3.logits
|
152 |
-
probabilities_3 = softmax(logits_3.cpu().numpy()[0])
|
153 |
-
result_3 = {
|
154 |
-
labels_3[1]: float(probabilities_3[1]), # Real
|
155 |
-
labels_3[0]: float(probabilities_3[0]) # AI
|
156 |
-
}
|
157 |
-
result_3output = [3, 'SDXL-Trained', float(probabilities_3[1]), float(probabilities_3[0])]
|
158 |
-
print(result_3output)
|
159 |
-
# Ensure the result dictionary contains all class names
|
160 |
-
for class_name in labels_3:
|
161 |
-
if class_name not in result_3:
|
162 |
-
result_3[class_name] = 0.0
|
163 |
-
# Check if either class meets the confidence threshold
|
164 |
-
if result_3['AI'] >= confidence_threshold:
|
165 |
-
label_3 = f"AI, Confidence: {result_3['AI']:.4f}"
|
166 |
-
result_3output += ['AI']
|
167 |
-
elif result_3['Real'] >= confidence_threshold:
|
168 |
-
label_3 = f"Real, Confidence: {result_3['Real']:.4f}"
|
169 |
-
result_3output += ['REAL']
|
170 |
-
else:
|
171 |
-
label_3 = "Uncertain Classification"
|
172 |
-
result_3output += ['UNCERTAIN']
|
173 |
-
except Exception as e:
|
174 |
-
label_3 = f"Error: {str(e)}"
|
175 |
-
|
176 |
-
# Predict using the fourth model with softmax
|
177 |
-
try:
|
178 |
-
inputs_4 = feature_extractor_4(img_pil, return_tensors="pt").to(device)
|
179 |
-
with torch.no_grad():
|
180 |
-
outputs_4 = model_4(**inputs_4)
|
181 |
-
logits_4 = outputs_4.logits
|
182 |
-
probabilities_4 = softmax(logits_4.cpu().numpy()[0])
|
183 |
-
result_4 = {
|
184 |
-
labels_4[1]: float(probabilities_4[1]), # Real
|
185 |
-
labels_4[0]: float(probabilities_4[0]) # AI
|
186 |
-
}
|
187 |
-
result_4output = [4, 'SDXL + FLUX', float(probabilities_4[1]), float(probabilities_4[0])]
|
188 |
-
print(result_4)
|
189 |
-
# Ensure the result dictionary contains all class names
|
190 |
-
for class_name in labels_4:
|
191 |
-
if class_name not in result_4:
|
192 |
-
result_4[class_name] = 0.0
|
193 |
-
# Check if either class meets the confidence threshold
|
194 |
-
if result_4['AI'] >= confidence_threshold:
|
195 |
-
label_4 = f"AI, Confidence: {result_4['AI']:.4f}"
|
196 |
-
result_4output += ['AI']
|
197 |
-
elif result_4['Real'] >= confidence_threshold:
|
198 |
-
label_4 = f"Real, Confidence: {result_4['Real']:.4f}"
|
199 |
-
result_4output += ['REAL']
|
200 |
-
else:
|
201 |
-
label_4 = "Uncertain Classification"
|
202 |
-
result_4output += ['UNCERTAIN']
|
203 |
-
except Exception as e:
|
204 |
-
label_4 = f"Error: {str(e)}"
|
205 |
-
|
206 |
-
try:
|
207 |
-
prediction_5 = clf_5(img_pilvits)
|
208 |
-
result_5 = {pred['label']: pred['score'] for pred in prediction_5}
|
209 |
-
result_5output = [5, 'ViT-base Newcomer', result_5['Realism'], result_5['Deepfake']]
|
210 |
-
|
211 |
-
# Ensure the result dictionary contains all class names
|
212 |
-
for class_name in class_names_5:
|
213 |
-
if class_name not in result_5:
|
214 |
-
result_5[class_name] = 0.0
|
215 |
-
# Check if either class meets the confidence threshold
|
216 |
-
if result_5['Deepfake'] >= confidence_threshold:
|
217 |
-
label_5 = f"AI, Confidence: {result_5['Deepfake']:.4f}"
|
218 |
-
result_5output += ['AI']
|
219 |
-
elif result_5['Real Image'] >= confidence_threshold:
|
220 |
-
label_5 = f"Real, Confidence: {result_5['Realism']:.4f}"
|
221 |
-
result_5output += ['REAL']
|
222 |
-
else:
|
223 |
-
label_5 = "Uncertain Classification"
|
224 |
-
result_5output += ['UNCERTAIN']
|
225 |
-
except Exception as e:
|
226 |
-
label_5 = f"Error: {str(e)}"
|
227 |
-
|
228 |
-
print(result_5output)
|
229 |
-
|
230 |
-
try:
|
231 |
-
prediction_5b = clf_5b(img_pilvits)
|
232 |
-
result_5b = {pred['label']: pred['score'] for pred in prediction_5b}
|
233 |
-
result_5boutput = [6, 'ViT-base Newcomer', result_5b['Real'], result_5b['Deepfake']]
|
234 |
-
|
235 |
-
# Ensure the result dictionary contains all class names
|
236 |
-
for class_name in class_names_5b:
|
237 |
-
if class_name not in result_5b:
|
238 |
-
result_5b[class_name] = 0.0
|
239 |
-
# Check if either class meets the confidence threshold
|
240 |
-
if result_5b['Deepfake'] >= confidence_threshold:
|
241 |
-
label_5b = f"AI, Confidence: {result_5b['Deepfake']:.4f}"
|
242 |
-
result_5boutput += ['AI']
|
243 |
-
elif result_5b['Real Image'] >= confidence_threshold:
|
244 |
-
label_5b = f"Real, Confidence: {result_5b['Real']:.4f}"
|
245 |
-
result_5boutput += ['REAL']
|
246 |
-
else:
|
247 |
-
label_5b = "Uncertain Classification"
|
248 |
-
result_5boutput += ['UNCERTAIN']
|
249 |
-
except Exception as e:
|
250 |
-
label_5b = f"Error: {str(e)}"
|
251 |
-
|
252 |
-
print(result_5boutput)
|
253 |
-
|
254 |
-
|
255 |
-
# try:
|
256 |
-
# result_5output = [5, 'TBA', 0.0, 0.0, 'MAINTENANCE']
|
257 |
-
# img_bytes = convert_pil_to_bytes(img_pil)
|
258 |
-
# # print(img)
|
259 |
-
# # print(img_bytes)
|
260 |
-
# response5_raw = call_inference(img)
|
261 |
-
# print(response5_raw)
|
262 |
-
# response5 = response5_raw
|
263 |
-
# print(response5)
|
264 |
-
# label_5 = f"Result: {response5}"
|
265 |
-
|
266 |
-
# except Exception as e:
|
267 |
-
# label_5 = f"Error: {str(e)}"
|
268 |
-
|
269 |
|
270 |
-
# Combine results
|
271 |
combined_results = {
|
272 |
"SwinV2/detect": label_1,
|
273 |
"ViT/AI-vs-Real": label_2,
|
274 |
"Swin/SDXL": label_3,
|
275 |
"Swin/SDXL-FLUX": label_4,
|
276 |
"prithivMLmods": label_5,
|
277 |
-
"prithivMLmods-2-22": label_5b
|
278 |
}
|
279 |
-
|
280 |
-
|
281 |
-
combined_outputs = [ result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput ]
|
282 |
-
# html_content = generate_results_html(combined_outputs)
|
283 |
|
|
|
284 |
return img_pil, combined_outputs
|
285 |
|
|
|
286 |
# Define a function to generate the HTML content
|
287 |
# Define a function to generate the HTML content
|
288 |
def generate_results_html(results):
|
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import numpy as np
|
|
|
8 |
import io
|
9 |
+
import logging
|
10 |
+
from utils.utils import softmax, augment_image, convert_pil_to_bytes
|
11 |
+
|
12 |
+
|
13 |
+
# Configure logging
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
|
|
|
|
|
17 |
|
18 |
# Ensure using GPU if available
|
19 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Model paths and class names
|
23 |
+
MODEL_PATHS = {
|
24 |
+
"model_1": "haywoodsloan/ai-image-detector-deploy",
|
25 |
+
"model_2": "Heem2/AI-vs-Real-Image-Detection",
|
26 |
+
"model_3": "Organika/sdxl-detector",
|
27 |
+
"model_4": "cmckinle/sdxl-flux-detector",
|
28 |
+
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model",
|
29 |
+
"model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22"
|
30 |
+
}
|
31 |
|
32 |
+
CLASS_NAMES = {
|
33 |
+
"model_1": ['artificial', 'real'],
|
34 |
+
"model_2": ['AI Image', 'Real Image'],
|
35 |
+
"model_3": ['AI', 'Real'],
|
36 |
+
"model_4": ['AI', 'Real'],
|
37 |
+
"model_5": ['Realism', 'Deepfake'],
|
38 |
+
"model_5b": ['Real', 'Deepfake']
|
39 |
+
}
|
40 |
|
41 |
+
# Load models and processors
|
42 |
+
def load_models():
|
43 |
+
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
|
44 |
+
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"])
|
45 |
+
model_1 = model_1.to(device)
|
46 |
+
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
|
47 |
|
48 |
+
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device)
|
|
|
49 |
|
50 |
+
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
|
51 |
+
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device)
|
54 |
+
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device)
|
|
|
55 |
|
56 |
+
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device)
|
57 |
+
clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device)
|
58 |
+
|
59 |
+
return clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b = load_models()
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
@spaces.GPU(duration=10)
|
64 |
+
def predict_with_model(img_pil, clf, class_names, confidence_threshold, model_name, model_id):
|
65 |
+
try:
|
66 |
+
prediction = clf(img_pil)
|
67 |
+
result = {pred['label']: pred['score'] for pred in prediction}
|
68 |
+
result_output = [model_id, model_name, result.get(class_names[1], 0.0), result.get(class_names[0], 0.0)]
|
69 |
+
logger.info(result_output)
|
70 |
+
for class_name in class_names:
|
71 |
+
if class_name not in result:
|
72 |
+
result[class_name] = 0.0
|
73 |
+
if result[class_names[0]] >= confidence_threshold:
|
74 |
+
label = f"AI, Confidence: {result[class_names[0]]:.4f}"
|
75 |
+
result_output.append('AI')
|
76 |
+
elif result[class_names[1]] >= confidence_threshold:
|
77 |
+
label = f"Real, Confidence: {result[class_names[1]]:.4f}"
|
78 |
+
result_output.append('REAL')
|
79 |
+
else:
|
80 |
+
label = "Uncertain Classification"
|
81 |
+
result_output.append('UNCERTAIN')
|
82 |
+
except Exception as e:
|
83 |
+
label = f"Error: {str(e)}"
|
84 |
+
return label, result_output
|
85 |
|
86 |
@spaces.GPU(duration=10)
|
87 |
def predict_image(img, confidence_threshold):
|
|
|
88 |
if not isinstance(img, Image.Image):
|
89 |
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
|
|
|
|
90 |
if img.mode != 'RGB':
|
91 |
img_pil = img.convert('RGB')
|
92 |
else:
|
93 |
img_pil = img
|
|
|
|
|
94 |
img_pil = transforms.Resize((256, 256))(img_pil)
|
|
|
95 |
img_pilvits = transforms.Resize((224, 224))(img_pil)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
label_1, result_1output = predict_with_model(img_pil, clf_1, CLASS_NAMES["model_1"], confidence_threshold, "SwinV2-base", 1)
|
98 |
+
label_2, result_2output = predict_with_model(img_pilvits, clf_2, CLASS_NAMES["model_2"], confidence_threshold, "ViT-base Classifer", 2)
|
99 |
+
label_3, result_3output = predict_with_model(img_pil, feature_extractor_3, model_3, CLASS_NAMES["model_3"], confidence_threshold, "SDXL-Trained", 3)
|
100 |
+
label_4, result_4output = predict_with_model(img_pil, feature_extractor_4, model_4, CLASS_NAMES["model_4"], confidence_threshold, "SDXL + FLUX", 4)
|
101 |
+
label_5, result_5output = predict_with_model(img_pilvits, clf_5, CLASS_NAMES["model_5"], confidence_threshold, "ViT-base Newcomer", 5)
|
102 |
+
label_5b, result_5boutput = predict_with_model(img_pilvits, clf_5b, CLASS_NAMES["model_5b"], confidence_threshold, "ViT-base Newcomer", 6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
|
|
104 |
combined_results = {
|
105 |
"SwinV2/detect": label_1,
|
106 |
"ViT/AI-vs-Real": label_2,
|
107 |
"Swin/SDXL": label_3,
|
108 |
"Swin/SDXL-FLUX": label_4,
|
109 |
"prithivMLmods": label_5,
|
110 |
+
"prithivMLmods-2-22": label_5b
|
111 |
}
|
112 |
+
print(combined_results)
|
|
|
|
|
|
|
113 |
|
114 |
+
combined_outputs = [result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput]
|
115 |
return img_pil, combined_outputs
|
116 |
|
117 |
+
|
118 |
# Define a function to generate the HTML content
|
119 |
# Define a function to generate the HTML content
|
120 |
def generate_results_html(results):
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import io
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms
|
5 |
+
|
6 |
+
def softmax(vector):
|
7 |
+
e = np.exp(vector - np.max(vector)) # for numerical stability
|
8 |
+
return e / e.sum()
|
9 |
+
|
10 |
+
def augment_image(img_pil):
|
11 |
+
transform_flip = transforms.Compose([
|
12 |
+
transforms.RandomHorizontalFlip(p=1.0)
|
13 |
+
])
|
14 |
+
transform_rotate = transforms.Compose([
|
15 |
+
transforms.RandomRotation(degrees=(90, 90))
|
16 |
+
])
|
17 |
+
augmented_img_flip = transform_flip(img_pil)
|
18 |
+
augmented_img_rotate = transform_rotate(img_pil)
|
19 |
+
return augmented_img_flip, augmented_img_rotate
|
20 |
+
|
21 |
+
def convert_pil_to_bytes(image, format='JPEG'):
|
22 |
+
img_byte_arr = io.BytesIO()
|
23 |
+
image.save(img_byte_arr, format=format)
|
24 |
+
img_byte_arr = img_byte_arr.getvalue()
|
25 |
+
return img_byte_arr
|