Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
-
# from transformers import AutoBackbone, AutoModelForImageClassification, AutoImageProcessor, Swinv2ForImageClassification
|
3 |
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification
|
4 |
from torchvision import transforms
|
5 |
|
6 |
-
# model
|
7 |
-
# image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
8 |
image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
9 |
-
# image_processor = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
10 |
model = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
11 |
-
|
12 |
clf = pipeline(model=model, task="image-classification", image_processor=image_processor)
|
13 |
|
|
|
14 |
class_names = ['artificial', 'real']
|
15 |
|
16 |
def predict_image(img):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
|
|
24 |
image = gr.Image(label="Image to Analyze", sources=['upload'])
|
25 |
label = gr.Label(num_top_classes=2)
|
26 |
-
|
27 |
gr.Interface(fn=predict_image, inputs=image, outputs=label, title="AI Generated Classification").launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification
|
3 |
from torchvision import transforms
|
4 |
|
5 |
+
# Load the model and processor
|
|
|
6 |
image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
|
|
7 |
model = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
|
|
8 |
clf = pipeline(model=model, task="image-classification", image_processor=image_processor)
|
9 |
|
10 |
+
# Define class names
|
11 |
class_names = ['artificial', 'real']
|
12 |
|
13 |
def predict_image(img):
|
14 |
+
# Convert the image to a PIL Image and resize it
|
15 |
+
img = transforms.ToPILImage()(img)
|
16 |
+
img = transforms.Resize((256, 256))(img)
|
17 |
+
|
18 |
+
# Get the prediction
|
19 |
+
prediction = clf(img)
|
20 |
+
|
21 |
+
# Process the prediction to match the class names
|
22 |
+
result = {pred['label']: pred['score'] for pred in prediction}
|
23 |
+
|
24 |
+
# Ensure the result dictionary contains both class names
|
25 |
+
for class_name in class_names:
|
26 |
+
if class_name not in result:
|
27 |
+
result[class_name] = 0.0
|
28 |
+
|
29 |
+
return result
|
30 |
|
31 |
+
# Define the Gradio interface
|
32 |
image = gr.Image(label="Image to Analyze", sources=['upload'])
|
33 |
label = gr.Label(num_top_classes=2)
|
|
|
34 |
gr.Interface(fn=predict_image, inputs=image, outputs=label, title="AI Generated Classification").launch()
|