Update app.py
Browse files
app.py
CHANGED
@@ -30,11 +30,8 @@ clf_2 = pipeline("image-classification", model=model_2_path, device=device)
|
|
30 |
|
31 |
# Load additional models
|
32 |
models = ["Organika/sdxl-detector", "cmckinle/sdxl-flux-detector"]
|
33 |
-
|
34 |
-
# Load the third and fourth models
|
35 |
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(models[0], device=device)
|
36 |
model_3 = AutoModelForImageClassification.from_pretrained(models[0]).to(device)
|
37 |
-
|
38 |
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1], device=device)
|
39 |
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device)
|
40 |
|
@@ -56,7 +53,6 @@ def convert_pil_to_bytes(image, format='JPEG'):
|
|
56 |
|
57 |
@spaces.GPU(duration=10)
|
58 |
def predict_image(img, confidence_threshold):
|
59 |
-
|
60 |
# Ensure the image is a PIL Image
|
61 |
if not isinstance(img, Image.Image):
|
62 |
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
@@ -66,7 +62,7 @@ def predict_image(img, confidence_threshold):
|
|
66 |
img_pil = img.convert('RGB')
|
67 |
else:
|
68 |
img_pil = img
|
69 |
-
|
70 |
# Resize the image
|
71 |
img_pil = transforms.Resize((256, 256))(img_pil)
|
72 |
|
@@ -79,7 +75,6 @@ def predict_image(img, confidence_threshold):
|
|
79 |
for class_name in class_names_1:
|
80 |
if class_name not in result_1:
|
81 |
result_1[class_name] = 0.0
|
82 |
-
|
83 |
# Check if either class meets the confidence threshold
|
84 |
if result_1['artificial'] >= confidence_threshold:
|
85 |
label_1 = f"AI, Confidence: {result_1['artificial']:.4f}"
|
@@ -99,7 +94,6 @@ def predict_image(img, confidence_threshold):
|
|
99 |
for class_name in class_names_2:
|
100 |
if class_name not in result_2:
|
101 |
result_2[class_name] = 0.0
|
102 |
-
|
103 |
# Check if either class meets the confidence threshold
|
104 |
if result_2['AI Image'] >= confidence_threshold:
|
105 |
label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}"
|
@@ -117,7 +111,6 @@ def predict_image(img, confidence_threshold):
|
|
117 |
outputs_3 = model_3(**inputs_3)
|
118 |
logits_3 = outputs_3.logits
|
119 |
probabilities_3 = softmax(logits_3.cpu().numpy()[0])
|
120 |
-
|
121 |
result_3 = {
|
122 |
labels_3[0]: float(probabilities_3[0]), # AI
|
123 |
labels_3[1]: float(probabilities_3[1]) # Real
|
@@ -127,7 +120,6 @@ def predict_image(img, confidence_threshold):
|
|
127 |
for class_name in labels_3:
|
128 |
if class_name not in result_3:
|
129 |
result_3[class_name] = 0.0
|
130 |
-
|
131 |
# Check if either class meets the confidence threshold
|
132 |
if result_3['AI'] >= confidence_threshold:
|
133 |
label_3 = f"AI, Confidence: {result_3['AI']:.4f}"
|
@@ -145,7 +137,6 @@ def predict_image(img, confidence_threshold):
|
|
145 |
outputs_4 = model_4(**inputs_4)
|
146 |
logits_4 = outputs_4.logits
|
147 |
probabilities_4 = softmax(logits_4.cpu().numpy()[0])
|
148 |
-
|
149 |
result_4 = {
|
150 |
labels_4[0]: float(probabilities_4[0]), # AI
|
151 |
labels_4[1]: float(probabilities_4[1]) # Real
|
@@ -155,7 +146,6 @@ def predict_image(img, confidence_threshold):
|
|
155 |
for class_name in labels_4:
|
156 |
if class_name not in result_4:
|
157 |
result_4[class_name] = 0.0
|
158 |
-
|
159 |
# Check if either class meets the confidence threshold
|
160 |
if result_4['AI'] >= confidence_threshold:
|
161 |
label_4 = f"AI, Confidence: {result_4['AI']:.4f}"
|
@@ -165,16 +155,17 @@ def predict_image(img, confidence_threshold):
|
|
165 |
label_4 = "Uncertain Classification"
|
166 |
except Exception as e:
|
167 |
label_4 = f"Error: {str(e)}"
|
168 |
-
|
169 |
try:
|
170 |
img_bytes = convert_pil_to_bytes(img_pil)
|
171 |
response5_raw = call_inference(img_bytes)
|
172 |
-
|
173 |
-
|
|
|
|
|
174 |
except Exception as e:
|
175 |
label_5 = f"Error: {str(e)}"
|
176 |
|
177 |
-
|
178 |
# Combine results
|
179 |
combined_results = {
|
180 |
"SwinV2/detect": label_1,
|
@@ -183,7 +174,6 @@ def predict_image(img, confidence_threshold):
|
|
183 |
"Swin/SDXL-FLUX": label_4,
|
184 |
"GOAT": label_5
|
185 |
}
|
186 |
-
|
187 |
return img_pil, combined_results
|
188 |
|
189 |
# Define the Gradio interface
|
@@ -197,10 +187,57 @@ with gr.Blocks() as iface:
|
|
197 |
inputs = [image_input, confidence_slider]
|
198 |
with gr.Column():
|
199 |
image_output = gr.Image(label="Processed Image")
|
200 |
-
|
201 |
-
|
|
|
202 |
|
203 |
gr.Button("Predict").click(fn=predict_image, inputs=inputs, outputs=outputs)
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
# Launch the interface
|
206 |
iface.launch()
|
|
|
30 |
|
31 |
# Load additional models
|
32 |
models = ["Organika/sdxl-detector", "cmckinle/sdxl-flux-detector"]
|
|
|
|
|
33 |
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(models[0], device=device)
|
34 |
model_3 = AutoModelForImageClassification.from_pretrained(models[0]).to(device)
|
|
|
35 |
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1], device=device)
|
36 |
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device)
|
37 |
|
|
|
53 |
|
54 |
@spaces.GPU(duration=10)
|
55 |
def predict_image(img, confidence_threshold):
|
|
|
56 |
# Ensure the image is a PIL Image
|
57 |
if not isinstance(img, Image.Image):
|
58 |
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
|
|
62 |
img_pil = img.convert('RGB')
|
63 |
else:
|
64 |
img_pil = img
|
65 |
+
|
66 |
# Resize the image
|
67 |
img_pil = transforms.Resize((256, 256))(img_pil)
|
68 |
|
|
|
75 |
for class_name in class_names_1:
|
76 |
if class_name not in result_1:
|
77 |
result_1[class_name] = 0.0
|
|
|
78 |
# Check if either class meets the confidence threshold
|
79 |
if result_1['artificial'] >= confidence_threshold:
|
80 |
label_1 = f"AI, Confidence: {result_1['artificial']:.4f}"
|
|
|
94 |
for class_name in class_names_2:
|
95 |
if class_name not in result_2:
|
96 |
result_2[class_name] = 0.0
|
|
|
97 |
# Check if either class meets the confidence threshold
|
98 |
if result_2['AI Image'] >= confidence_threshold:
|
99 |
label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}"
|
|
|
111 |
outputs_3 = model_3(**inputs_3)
|
112 |
logits_3 = outputs_3.logits
|
113 |
probabilities_3 = softmax(logits_3.cpu().numpy()[0])
|
|
|
114 |
result_3 = {
|
115 |
labels_3[0]: float(probabilities_3[0]), # AI
|
116 |
labels_3[1]: float(probabilities_3[1]) # Real
|
|
|
120 |
for class_name in labels_3:
|
121 |
if class_name not in result_3:
|
122 |
result_3[class_name] = 0.0
|
|
|
123 |
# Check if either class meets the confidence threshold
|
124 |
if result_3['AI'] >= confidence_threshold:
|
125 |
label_3 = f"AI, Confidence: {result_3['AI']:.4f}"
|
|
|
137 |
outputs_4 = model_4(**inputs_4)
|
138 |
logits_4 = outputs_4.logits
|
139 |
probabilities_4 = softmax(logits_4.cpu().numpy()[0])
|
|
|
140 |
result_4 = {
|
141 |
labels_4[0]: float(probabilities_4[0]), # AI
|
142 |
labels_4[1]: float(probabilities_4[1]) # Real
|
|
|
146 |
for class_name in labels_4:
|
147 |
if class_name not in result_4:
|
148 |
result_4[class_name] = 0.0
|
|
|
149 |
# Check if either class meets the confidence threshold
|
150 |
if result_4['AI'] >= confidence_threshold:
|
151 |
label_4 = f"AI, Confidence: {result_4['AI']:.4f}"
|
|
|
155 |
label_4 = "Uncertain Classification"
|
156 |
except Exception as e:
|
157 |
label_4 = f"Error: {str(e)}"
|
158 |
+
|
159 |
try:
|
160 |
img_bytes = convert_pil_to_bytes(img_pil)
|
161 |
response5_raw = call_inference(img_bytes)
|
162 |
+
print(response5_raw)
|
163 |
+
response5 = response5_raw
|
164 |
+
|
165 |
+
label_5 = f"Result: {response5}"
|
166 |
except Exception as e:
|
167 |
label_5 = f"Error: {str(e)}"
|
168 |
|
|
|
169 |
# Combine results
|
170 |
combined_results = {
|
171 |
"SwinV2/detect": label_1,
|
|
|
174 |
"Swin/SDXL-FLUX": label_4,
|
175 |
"GOAT": label_5
|
176 |
}
|
|
|
177 |
return img_pil, combined_results
|
178 |
|
179 |
# Define the Gradio interface
|
|
|
187 |
inputs = [image_input, confidence_slider]
|
188 |
with gr.Column():
|
189 |
image_output = gr.Image(label="Processed Image")
|
190 |
+
# Custom HTML component to display results in 5 columns
|
191 |
+
results_html = gr.HTML(label="Model Predictions")
|
192 |
+
outputs = [image_output, results_html]
|
193 |
|
194 |
gr.Button("Predict").click(fn=predict_image, inputs=inputs, outputs=outputs)
|
195 |
|
196 |
+
# Define a function to generate the HTML content for the results
|
197 |
+
def generate_results_html(results):
|
198 |
+
html_content = """
|
199 |
+
<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" rel="stylesheet">
|
200 |
+
<div class="container">
|
201 |
+
<div class="row mt-4">
|
202 |
+
<div class="col">
|
203 |
+
<h5>SwinV2/detect</h5>
|
204 |
+
<p>{SwinV2_detect}</p>
|
205 |
+
</div>
|
206 |
+
<div class="col">
|
207 |
+
<h5>ViT/AI-vs-Real</h5>
|
208 |
+
<p>{ViT_AI_vs_Real}</p>
|
209 |
+
</div>
|
210 |
+
<div class="col">
|
211 |
+
<h5>Swin/SDXL</h5>
|
212 |
+
<p>{Swin_SDXL}</p>
|
213 |
+
</div>
|
214 |
+
<div class="col">
|
215 |
+
<h5>Swin/SDXL-FLUX</h5>
|
216 |
+
<p>{Swin_SDXL_FLUX}</p>
|
217 |
+
</div>
|
218 |
+
<div class="col">
|
219 |
+
<h5>GOAT</h5>
|
220 |
+
<p>{GOAT}</p>
|
221 |
+
</div>
|
222 |
+
</div>
|
223 |
+
</div>
|
224 |
+
""".format(
|
225 |
+
SwinV2_detect=results.get("SwinV2/detect", "N/A"),
|
226 |
+
ViT_AI_vs_Real=results.get("ViT/AI-vs-Real", "N/A"),
|
227 |
+
Swin_SDXL=results.get("Swin/SDXL", "N/A"),
|
228 |
+
Swin_SDXL_FLUX=results.get("Swin/SDXL-FLUX", "N/A"),
|
229 |
+
GOAT=results.get("GOAT", "N/A")
|
230 |
+
)
|
231 |
+
return html_content
|
232 |
+
|
233 |
+
# Modify the predict_image function to return the HTML content
|
234 |
+
def predict_image_with_html(img, confidence_threshold):
|
235 |
+
img_pil, results = predict_image(img, confidence_threshold)
|
236 |
+
html_content = generate_results_html(results)
|
237 |
+
return img_pil, html_content
|
238 |
+
|
239 |
+
# Update the button click to use the new function
|
240 |
+
gr.Button("Predict").click(fn=predict_image_with_html, inputs=inputs, outputs=outputs)
|
241 |
+
|
242 |
# Launch the interface
|
243 |
iface.launch()
|