LPX commited on
Commit
c08bf6c
·
1 Parent(s): 86a7c4c

✨ feat(predict): add Error Level Analysis to image prediction

Browse files

【Predict Image Function】
- integrate an extra transform using ELA (Error Level Analysis)

【User Interface】
- display ELA transformed image

【Settings】
- updated the visibility of settings slider

Files changed (2) hide show
  1. app.py +10 -7
  2. utils/utils.py +19 -2
app.py CHANGED
@@ -7,7 +7,7 @@ from PIL import Image
7
  import numpy as np
8
  import io
9
  import logging
10
- from utils.utils import softmax, augment_image, convert_pil_to_bytes
11
 
12
 
13
  # Configure logging
@@ -219,8 +219,9 @@ def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_d
219
  else:
220
  img_pil = img
221
  img_pil, results = predict_image(img_pil, confidence_threshold)
 
222
  html_content = generate_results_html(results)
223
- return img_pil, html_content
224
 
225
  with gr.Blocks() as iface:
226
  with gr.Tab("AI Image Detection"):
@@ -231,20 +232,22 @@ with gr.Blocks() as iface:
231
  image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
232
  with gr.Accordion("Settings", open=False, elem_id="settings_accordion"):
233
  augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods")
234
- rotate_slider = gr.Slider(0, 360, value=0, step=1, label="Rotate Degrees", visible=False)
235
- noise_slider = gr.Slider(0, 100, value=0, step=1, label="Noise Level", visible=False)
236
- sharpen_slider = gr.Slider(0, 100, value=1, step=1, label="Sharpen Strength", visible=False)
237
- confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
238
  inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider]
239
  predict_button = gr.Button("Predict")
240
  image_output = gr.Image(label="Processed Image", visible=True)
 
 
241
 
242
  with gr.Column(scale=2):
243
  with gr.Accordion("Project OpenSight - Model Evaluations & Playground", open=False, elem_id="project_accordion"):
244
  gr.Markdown("## OpenSight is a SOTA gen. image detection model, in pre-release prep.\n\nThis HF Space is a temporary home for us and the public to evaluate the shortcomings of current open source models.\n\n<-- Feel free to play around by starting with an image as we prepare our formal announcement.")
245
  # Custom HTML component to display results in 5 columns
246
  results_html = gr.HTML(label="Model Predictions")
247
- outputs = [image_output, results_html]
248
 
249
  # Show/hide rotate slider based on selected augmentation method
250
  augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider])
 
7
  import numpy as np
8
  import io
9
  import logging
10
+ from utils.utils import softmax, augment_image, convert_pil_to_bytes, ELA
11
 
12
 
13
  # Configure logging
 
219
  else:
220
  img_pil = img
221
  img_pil, results = predict_image(img_pil, confidence_threshold)
222
+ ela_img = ELA(img_pil) # Apply ELA to the image
223
  html_content = generate_results_html(results)
224
+ return img_pil, ela_img, html_content
225
 
226
  with gr.Blocks() as iface:
227
  with gr.Tab("AI Image Detection"):
 
232
  image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
233
  with gr.Accordion("Settings", open=False, elem_id="settings_accordion"):
234
  augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods")
235
+ rotate_slider = gr.Slider(0, 45, value=2, step=1, label="Rotate Degrees", visible=False)
236
+ noise_slider = gr.Slider(0, 50, value=4, step=1, label="Noise Level", visible=False)
237
+ sharpen_slider = gr.Slider(0, 50, value=11, step=1, label="Sharpen Strength", visible=False)
238
+ confidence_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Confidence Threshold")
239
  inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider]
240
  predict_button = gr.Button("Predict")
241
  image_output = gr.Image(label="Processed Image", visible=True)
242
+ ela_image_output = gr.Image(label="ELA Processed Image", visible=True)
243
+
244
 
245
  with gr.Column(scale=2):
246
  with gr.Accordion("Project OpenSight - Model Evaluations & Playground", open=False, elem_id="project_accordion"):
247
  gr.Markdown("## OpenSight is a SOTA gen. image detection model, in pre-release prep.\n\nThis HF Space is a temporary home for us and the public to evaluate the shortcomings of current open source models.\n\n<-- Feel free to play around by starting with an image as we prepare our formal announcement.")
248
  # Custom HTML component to display results in 5 columns
249
  results_html = gr.HTML(label="Model Predictions")
250
+ outputs = [image_output, ela_image_output, results_html]
251
 
252
  # Show/hide rotate slider based on selected augmentation method
253
  augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider])
utils/utils.py CHANGED
@@ -1,6 +1,6 @@
1
  import numpy as np
2
  import io
3
- from PIL import Image, ImageFilter
4
  from torchvision import transforms
5
 
6
  def softmax(vector):
@@ -22,4 +22,21 @@ def convert_pil_to_bytes(image, format='JPEG'):
22
  img_byte_arr = io.BytesIO()
23
  image.save(img_byte_arr, format=format)
24
  img_byte_arr = img_byte_arr.getvalue()
25
- return img_byte_arr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import numpy as np
2
  import io
3
+ from PIL import Image, ImageFilter, ImageChops
4
  from torchvision import transforms
5
 
6
  def softmax(vector):
 
22
  img_byte_arr = io.BytesIO()
23
  image.save(img_byte_arr, format=format)
24
  img_byte_arr = img_byte_arr.getvalue()
25
+ return img_byte_arr
26
+
27
+ def ELA(img_pil, scale=77, alpha=0.66):
28
+ # Error Level Analysis for basic image forensics
29
+ original = img_pil.copy() # open up the input image
30
+ temp_path = 'temp.jpg' # temporary image name to save the ELA to
31
+ original.save(temp_path, quality=95) # re-save the image with a quality of 95%
32
+ temporary = Image.open(temp_path) # open up the re-saved image
33
+
34
+ diff = ImageChops.difference(original, temporary) # load in the images to look at pixel by pixel differences
35
+ d = diff.load() # load the image into a variable
36
+ WIDTH, HEIGHT = diff.size # set the size into a tuple
37
+ for x in range(WIDTH): # row by row
38
+ for y in range(HEIGHT): # column by column
39
+ d[x, y] = tuple(k * scale for k in d[x, y]) # set the pixels to their x,y & color based on error
40
+
41
+ new_img = ImageChops.blend(temporary, diff, alpha) # blend the original w/ the ELA @ a set alpha/transparency
42
+ return new_img