ethix commited on
Commit
c0b0cd4
·
1 Parent(s): 93c599f

UPDATED: Updated ELA image processing in app.py and ela.py

Browse files

- Updated ELA image processing in app.py by replacing the previous ELA image generation with two passes: standard analysis and enhanced visibility.
- Updated genELA() function in ela.py to improve the:
- Replaced the previous implementation with a new implementation.
- Added arguments for quality, scale, contrast, linear, and grayscale.
- Compressed the input image using JPEG compression.
- Calculated the difference compressed images.
- Applied scaling to the difference image.
- Applied contrast adjustment to the resulting image.
- Added support for linear difference and grayscale output.
- Returned the processed ELA image.

Files changed (2) hide show
  1. app.py +6 -4
  2. utils/ela.py +59 -17
app.py CHANGED
@@ -277,11 +277,13 @@ def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_d
277
  gradient_image = gradient_processing(img_np) # Added gradient processing
278
  minmax_image = minmax_preprocess(img_np) # Added MinMax processing
279
 
280
- # Generate ELA images with different presets
281
- ela_img_1 = ELA(img_pil, scale=100, alpha=0.66)
282
- ela_img_2 = ELA(img_pil, scale=50, alpha=0.5)
 
 
283
 
284
- forensics_images = [img_pil, ela_img_1, ela_img_2, gradient_image, minmax_image]
285
 
286
  html_content = generate_results_html(results)
287
  return img_pil, forensics_images, html_content
 
277
  gradient_image = gradient_processing(img_np) # Added gradient processing
278
  minmax_image = minmax_preprocess(img_np) # Added MinMax processing
279
 
280
+ # First pass - standard analysis
281
+ ela1 = ELA(img_np, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
282
+
283
+ # Second pass - enhanced visibility
284
+ ela2 = ELA(img_np, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
285
 
286
+ forensics_images = [img_pil, ela1, ela2, gradient_image, minmax_image]
287
 
288
  html_content = generate_results_html(results)
289
  return img_pil, forensics_images, html_content
utils/ela.py CHANGED
@@ -1,21 +1,63 @@
1
  import numpy as np
2
- import io
3
- from PIL import Image, ImageFilter, ImageChops
4
- from torchvision import transforms
5
 
6
- def genELA(img_pil, scale=77, alpha=0.66):
7
- # Error Level Analysis for basic image forensics
8
- original = img_pil.copy() # open up the input image
9
- temp_path = 'temp.jpg' # temporary image name to save the ELA to
10
- original.save(temp_path, quality=95) # re-save the image with a quality of 95%
11
- temporary = Image.open(temp_path) # open up the re-saved image
12
 
13
- diff = ImageChops.difference(original, temporary) # load in the images to look at pixel by pixel differences
14
- d = diff.load() # load the image into a variable
15
- WIDTH, HEIGHT = diff.size # set the size into a tuple
16
- for x in range(WIDTH): # row by row
17
- for y in range(HEIGHT): # column by column
18
- d[x, y] = tuple(k * scale for k in d[x, y]) # set the pixels to their x,y & color based on error
19
 
20
- new_img = ImageChops.blend(temporary, diff, alpha) # blend the original w/ the ELA @ a set alpha/transparency
21
- return new_img
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import numpy as np
2
+ import cv2 as cv
3
+ from time import time
 
4
 
5
+ def compress_jpg(image, quality):
6
+ """Compress image using JPEG compression."""
7
+ encode_param = [int(cv.IMWRITE_JPEG_QUALITY), quality]
8
+ _, buffer = cv.imencode('.jpg', image, encode_param)
9
+ return cv.imdecode(buffer, cv.IMREAD_COLOR)
 
10
 
11
+ def desaturate(image):
12
+ """Convert image to grayscale."""
13
+ return cv.cvtColor(image, cv.COLOR_BGR2GRAY)
 
 
 
14
 
15
+ def create_lut(contrast, brightness):
16
+ """Create lookup table for contrast and brightness adjustment."""
17
+ lut = np.arange(256, dtype=np.uint8)
18
+ lut = cv.LUT(lut, lut)
19
+ lut = cv.convertScaleAbs(lut, None, contrast/128, brightness)
20
+ return lut
21
+
22
+ def elapsed_time(start):
23
+ """Calculate elapsed time since start."""
24
+ return f"{time() - start:.3f}s"
25
+
26
+ def genELA(img, quality=75, scale=50, contrast=20, linear=False, grayscale=False):
27
+ """
28
+ Perform Error Level Analysis on an image.
29
+
30
+ Args:
31
+ img: Input image (numpy array)
32
+ quality: JPEG compression quality (1-100)
33
+ scale: Output multiplicative gain (1-100)
34
+ contrast: Output tonality compression (0-100)
35
+ linear: Whether to use linear difference
36
+ grayscale: Whether to output grayscale image
37
+
38
+ Returns:
39
+ Processed ELA image
40
+ """
41
+ # Convert image to float32 and normalize
42
+ original = img.astype(np.float32) / 255
43
+
44
+ # Compress image
45
+ compressed = compress_jpg(img, quality)
46
+ compressed = compressed.astype(np.float32) / 255
47
+
48
+ # Calculate difference based on mode
49
+ if not linear:
50
+ difference = cv.absdiff(original, compressed)
51
+ ela = cv.convertScaleAbs(cv.sqrt(difference) * 255, None, scale / 20)
52
+ else:
53
+ ela = cv.convertScaleAbs(cv.subtract(compressed, img), None, scale)
54
+
55
+ # Apply contrast adjustment
56
+ contrast_value = int(contrast / 100 * 128)
57
+ ela = cv.LUT(ela, create_lut(contrast_value, contrast_value))
58
+
59
+ # Convert to grayscale if requested
60
+ if grayscale:
61
+ ela = desaturate(ela)
62
+
63
+ return ela