UPDATED: Updated ELA image processing in app.py and ela.py
Browse files- Updated ELA image processing in app.py by replacing the previous ELA image generation with two passes: standard analysis and enhanced visibility.
- Updated genELA() function in ela.py to improve the:
- Replaced the previous implementation with a new implementation.
- Added arguments for quality, scale, contrast, linear, and grayscale.
- Compressed the input image using JPEG compression.
- Calculated the difference compressed images.
- Applied scaling to the difference image.
- Applied contrast adjustment to the resulting image.
- Added support for linear difference and grayscale output.
- Returned the processed ELA image.
- app.py +6 -4
- utils/ela.py +59 -17
app.py
CHANGED
@@ -277,11 +277,13 @@ def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_d
|
|
277 |
gradient_image = gradient_processing(img_np) # Added gradient processing
|
278 |
minmax_image = minmax_preprocess(img_np) # Added MinMax processing
|
279 |
|
280 |
-
#
|
281 |
-
|
282 |
-
|
|
|
|
|
283 |
|
284 |
-
forensics_images = [img_pil,
|
285 |
|
286 |
html_content = generate_results_html(results)
|
287 |
return img_pil, forensics_images, html_content
|
|
|
277 |
gradient_image = gradient_processing(img_np) # Added gradient processing
|
278 |
minmax_image = minmax_preprocess(img_np) # Added MinMax processing
|
279 |
|
280 |
+
# First pass - standard analysis
|
281 |
+
ela1 = ELA(img_np, quality=75, scale=50, contrast=20, linear=False, grayscale=True)
|
282 |
+
|
283 |
+
# Second pass - enhanced visibility
|
284 |
+
ela2 = ELA(img_np, quality=75, scale=75, contrast=25, linear=False, grayscale=True)
|
285 |
|
286 |
+
forensics_images = [img_pil, ela1, ela2, gradient_image, minmax_image]
|
287 |
|
288 |
html_content = generate_results_html(results)
|
289 |
return img_pil, forensics_images, html_content
|
utils/ela.py
CHANGED
@@ -1,21 +1,63 @@
|
|
1 |
import numpy as np
|
2 |
-
import
|
3 |
-
from
|
4 |
-
from torchvision import transforms
|
5 |
|
6 |
-
def
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
temporary = Image.open(temp_path) # open up the re-saved image
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
for x in range(WIDTH): # row by row
|
17 |
-
for y in range(HEIGHT): # column by column
|
18 |
-
d[x, y] = tuple(k * scale for k in d[x, y]) # set the pixels to their x,y & color based on error
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
2 |
+
import cv2 as cv
|
3 |
+
from time import time
|
|
|
4 |
|
5 |
+
def compress_jpg(image, quality):
|
6 |
+
"""Compress image using JPEG compression."""
|
7 |
+
encode_param = [int(cv.IMWRITE_JPEG_QUALITY), quality]
|
8 |
+
_, buffer = cv.imencode('.jpg', image, encode_param)
|
9 |
+
return cv.imdecode(buffer, cv.IMREAD_COLOR)
|
|
|
10 |
|
11 |
+
def desaturate(image):
|
12 |
+
"""Convert image to grayscale."""
|
13 |
+
return cv.cvtColor(image, cv.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
14 |
|
15 |
+
def create_lut(contrast, brightness):
|
16 |
+
"""Create lookup table for contrast and brightness adjustment."""
|
17 |
+
lut = np.arange(256, dtype=np.uint8)
|
18 |
+
lut = cv.LUT(lut, lut)
|
19 |
+
lut = cv.convertScaleAbs(lut, None, contrast/128, brightness)
|
20 |
+
return lut
|
21 |
+
|
22 |
+
def elapsed_time(start):
|
23 |
+
"""Calculate elapsed time since start."""
|
24 |
+
return f"{time() - start:.3f}s"
|
25 |
+
|
26 |
+
def genELA(img, quality=75, scale=50, contrast=20, linear=False, grayscale=False):
|
27 |
+
"""
|
28 |
+
Perform Error Level Analysis on an image.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
img: Input image (numpy array)
|
32 |
+
quality: JPEG compression quality (1-100)
|
33 |
+
scale: Output multiplicative gain (1-100)
|
34 |
+
contrast: Output tonality compression (0-100)
|
35 |
+
linear: Whether to use linear difference
|
36 |
+
grayscale: Whether to output grayscale image
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
Processed ELA image
|
40 |
+
"""
|
41 |
+
# Convert image to float32 and normalize
|
42 |
+
original = img.astype(np.float32) / 255
|
43 |
+
|
44 |
+
# Compress image
|
45 |
+
compressed = compress_jpg(img, quality)
|
46 |
+
compressed = compressed.astype(np.float32) / 255
|
47 |
+
|
48 |
+
# Calculate difference based on mode
|
49 |
+
if not linear:
|
50 |
+
difference = cv.absdiff(original, compressed)
|
51 |
+
ela = cv.convertScaleAbs(cv.sqrt(difference) * 255, None, scale / 20)
|
52 |
+
else:
|
53 |
+
ela = cv.convertScaleAbs(cv.subtract(compressed, img), None, scale)
|
54 |
+
|
55 |
+
# Apply contrast adjustment
|
56 |
+
contrast_value = int(contrast / 100 * 128)
|
57 |
+
ela = cv.LUT(ela, create_lut(contrast_value, contrast_value))
|
58 |
+
|
59 |
+
# Convert to grayscale if requested
|
60 |
+
if grayscale:
|
61 |
+
ela = desaturate(ela)
|
62 |
+
|
63 |
+
return ela
|