import numpy as np import io from PIL import Image, ImageFilter, ImageChops from torchvision import transforms def softmax(vector): e = np.exp(vector - np.max(vector)) # for numerical stability return e / e.sum() def augment_image(img_pil, methods, rotate_degrees=0, noise_level=0, sharpen_strength=1): for method in methods: if method == "rotate": img_pil = img_pil.rotate(rotate_degrees) elif method == "add_noise": noise = np.random.normal(0, noise_level, img_pil.size[::-1] + (3,)).astype(np.uint8) img_pil = Image.fromarray(np.clip(np.array(img_pil) + noise, 0, 255).astype(np.uint8)) elif method == "sharpen": img_pil = img_pil.filter(ImageFilter.UnsharpMask(radius=2, percent=sharpen_strength, threshold=3)) return img_pil, img_pil def convert_pil_to_bytes(image, format='JPEG'): img_byte_arr = io.BytesIO() image.save(img_byte_arr, format=format) img_byte_arr = img_byte_arr.getvalue() return img_byte_arr def ELA(img_pil, scale=77, alpha=0.66): # Error Level Analysis for basic image forensics original = img_pil.copy() # open up the input image temp_path = 'temp.jpg' # temporary image name to save the ELA to original.save(temp_path, quality=95) # re-save the image with a quality of 95% temporary = Image.open(temp_path) # open up the re-saved image diff = ImageChops.difference(original, temporary) # load in the images to look at pixel by pixel differences d = diff.load() # load the image into a variable WIDTH, HEIGHT = diff.size # set the size into a tuple for x in range(WIDTH): # row by row for y in range(HEIGHT): # column by column d[x, y] = tuple(k * scale for k in d[x, y]) # set the pixels to their x,y & color based on error new_img = ImageChops.blend(temporary, diff, alpha) # blend the original w/ the ELA @ a set alpha/transparency return new_img